
shacl2sparql: Validating a sparql Endpoint
against Recursive shacl Constraints

Julien Corman1, Fernando Florenzano2, Juan L. Reutter2
, and Ognjen Savković1

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 PUC Chile and IMFD, Chile

Abstract. The article presents shacl2sparql, a tool that validates
an rdf graph stored as a sparql endpoint against possibly recursive
shacl constraints. It is based on the algorithm proposed in [3]. This im-
plementation improves upon the original algorithm with a wider range
of natively supported constraint operators, sparql query optimization
techniques, and a mechanism to explain invalid targets.

1 Introduction

rdf shapes have recently emerged as an intuitive way to formulate constraints
over rdf graphs. In particular, shacl (for SHApe Constraint Language) has be-
come a W3C recommendation in July 2017. A shacl schema is composed of so-
called shapes, which define properties to be verified by a node and its neighbors.
As an illustration, Figure 1 contains two shacl shapes. Shape DirectorShape
states that a director must have an IMDB identifier, whereas shape MovieShape
states that a movie must have at least one director, and that all of them must ver-
ify DirectorShape. In addition, MovieShape defines its targets, namely all instances
of the class Movie, which must be validated against this shape. DirectorShape on
the other hand has no target definition.

A key feature of shape-based constraints is the possibility for a shape to re-
fer to another, like MovieShape refers to DirectorShape in Figure 1. This allows
designing schemas in a modular fashion, but also reusing existing shapes in a
new schema, thus favoring semantic interoperability. However, validation tech-
niques for schemas with references are still at an early stage. In particular, the
shacl specification leaves explicitly undefined the semantics of so-called recur-
sive schemas, i.e. schemas where some shape refers to itself, either directly or
via a reference cycle.

Another important aspect of shape-based validation is the storage of the
graph. rdf datasets are often exposed as endpoints, and accessed via sparql
queries. Validating a non-recursive schema in this context is relatively straight-
forward, since non-recursive shacl schemas (even with references) have a nat-
ural translation to sparql. But recursive schemas exceed the expressive power
of sparql, making validation more involved: if the schema is recursive, it is not
possible in general to retrieve all nodes violating a given shape by executing a

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).



2 Julien Corman, Fernando Florenzano, Juan L. Reutter and Ognjen Savković

:MovieShape
a sh:NodeShape ;
sh:targetClass dbo:Film ;
sh:property [

sh:path dbo:director ;
sh:node :DirectorShape ;
sh:minCount 1 ] .

:DirectorShape
a sh:NodeShape ;
sh:property [

sh:path dbo:ImdbId ;
sh:minCount 1 ] .

Fig. 1: Two shacl shapes, about movies and directors

single sparql query over the endpoint. Therefore some extra computation is
required in order to validate an endpoint against such schema.

This opens a wide range of possibilities. At one end of the spectrum, vali-
dation may be performed in-memory, relying on simple sparql queries, whose
purpose is to retrieve subgraphs to be validated. At the other end of the spec-
trum, validation may be delegated as much as possible to query evaluation, but
queries in this case may be complex and/or partially redundant. The right com-
promise may be dictated by available resources (e.g. which proportion of the
graph can effectively be loaded into memory), and/or the performance of the
endpoint for a given type of queries (depending on physical storage, indexes,
parallelization, etc.).

An abstract algorithm was proposed in [3], for two recursive but tractable
fragments of shacl. The approach favors a limited number of simple queries
(one per shape) with low selectivity, whereas the rest of the validation process
is handled by some in-memory rule-based inference.

The current paper presents a prototype implementation of this algorithm,
named shacl2sparql, which is the first implementation (to our knowledge)
of recursive shacl validation over an endpoint. It improves upon the abstract
algorithm thanks to (i) a wider range of natively supported constraint operators,
(ii) a mechanism to explain invalid targets, (iii) query optimization techniques.
The source code is available online [2], together with execution and building
instructions.

Due to space limitations, the article only sketches the original algorithm, and
focuses on shacl2sparql functionalities, in particular how it improves upon [3].

2 Validation Algorithm

The algorithm defined in [3] takes as input an rdf graph and a shape schema
in normal form, i.e. whose constraints use only a small set of core operators
(conjunction, negation, minimum cardinality, etc.), and no nested operator. A
normalized schema can in turn be obtained in linear time from a non-normalized
one, by introducing fresh shapes for sub-expressions. The validation algorithm
processes each shape s in this normalized schema, one after the other. A sparql
query qdef(s) is generated for s, which retrieves each node v that may verify the
constraints for s, as well as the neighbors of v needed to validate it against s.
For instance, for shape MovieShape in Figure 1:

qdef(MovieShape) = SELECT ?x ?y WHERE {?x dbo:director ?y}



shacl2sparql: Validating a sparql endpoint against shacl 3

This query retrieves all nodes (bound to ?x) that have a dbo:director-successor,
and thus may verify the constraints for MovieShape. It also retrieves these
dbo:director-successors (bound to ?y), which will in turn be validated against
shape DirectorShape.

The answers to qdef(s) over the graph are then used to generate a set of
Boolean formulas, which may be viewed as rules, one per answer. These rules
are added to the set of rules computed so far, and some in-memory inference
is performed, identifying all targets that can be inferred to be either valid or
violated at this stage, and discarding unnecessary rules. After this inference
phase, another shape is selected, and the process repeated until either all shapes
have been processed, or each target has been validated or violated. The specific
order in which shapes are processed does not affect soundness.

3 shacl2sparql
shacl2sparql takes as input (the address of) a sparql endpoint and a shacl
schema. A first improvement over[3] is the format of the schema.

The algorithm executed by shacl2sparql natively handles constraints with
additional operators (disjunction, maximum cardinality, “for all”, etc.), although
it cannot yet handle the full shacl syntax. An extension to non-normalized
schemas within the two tractable fragments is under development. This does
not increase the expressive power of constraints (these extra operators can be
expressed by combining core operators), but may reduce the number of queries
to be evaluated against the endpoint (one per shape). shacl2sparql supports
two alternative concrete syntaxes for constraints, either the rdf (turtle) syntax
of the shacl specification (parsed with the Shaclex [1] library), or an ad-hoc
(and more user-friendly) json syntax.

Another improvement pertains to traceability. The shape ordering strategy
followed by shacl2sparql consists in prioritizing shapes with a target defini-
tion, then the shapes that they refer to (if not processed yet), etc. As a side effect,
the validation report produced by shacl2sparql contains possible explanations
for the failure of each invalid target, in the form of a sequence of shape refer-
ences. For instance, let s0 be a shape with non-empty target definition. And let
us assume three additional shapes s1, s2, s3 with empty target definitions, and
such that s0 refers to s1 and s3, s1 refers s2, and s2 refers to s3. Then the shape
processing order (from left to right) is [{s0}, {s1, s3}, {s2}] (where {si, sj} means
that si and sj can be processed in any order). Now let v be a target node for s0,
and let us assume that this target is inferred to be violated immediately after
processing shape s3. This must be due to a constraint in s0 referring to shape s3
(like MovieShape refers to DirectorShape in Figure 1). So the sequence s0 → s3 is
returned as an explanation. Other explanations are possible, but their number
is worst-case exponential, which is why shacl2sparql only returns the first one
found. This strategy also guarantees that (one of) the shortest explanations is
returned (e.g. s0 → s1 → s2 → s3 may be another in this example).

As additional output, shacl2sparql provides the generated sparql queries,
their evaluation order, and various statistics about the validation process (ex-
ecution times, number of answers to each query, number of valid and violated
targets after each inference phase, etc.).



4 Julien Corman, Fernando Florenzano, Juan L. Reutter and Ognjen Savković

Fig. 2: Screenshot of the web interface

Other improvements pertains to query optimization. For instance, a potential
bottleneck of the abstract algorithm defined in [3] is shapes with cardinality
constraints, e.g. “sh:minCount k”. If k > 1, and if a node v has n r-successors
with n > k, then qdef(s) may have

(
n
k

)
answers for v and its immediate neighbors.

To avoid such combinatorial explosion, it is possible in some cases to reduce the
selectivity of qdef(s), by extending it with a nested subquery that acts as a filter.
If no other shape refers to s, then this subquery is the target definition of s. Or
if only one other shape s′ refers to s, and if s has an empty target definition,
then this subquery is the optimized query (defined inductively) for s′.

4 Demo and Web Interface
The demonstration will offer the possibility to test shacl2sparql via a web
interface, a screenshot of which is shown in Figure 2. A connection to a local
instance of DBPedia will be provided, together with predefined shacl schemas.
Attendees will be offered the possibility to write their own shapes, analyze the
output of the validation process (explanations for invalid targets), understand
the execution of the algorithm (visualizing sparql queries), and appreciate the
performance of the tool thanks to statistics (e.g. time spent evaluating queries
vs time spent reasoning).
Acknowledgments. This work was supported by the QUADRO, ROBAST,
OBATS and ADVANCE4KG projects at the Free University of Bozen-Bolzano,
and the Millennium Institute for Foundational Research on Data (IMFD), Chile.

References

[1] Shaclex. github.com/labra/shaclex.
[2] Shacl/sparql, source code. github.com/rdfshapes/shacl-sparql.
[3] J. Corman, F. Florenzano, J. L. Reutter, and O. Savković. Validating SHACL

constraints over a SPARQL endpoint. In ISWC, 2019.

github.com/labra/shaclex
github.com/rdfshapes/shacl-sparql

	 shacl2sparql: Validating a sparql Endpoint against Recursive shacl Constraints

