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Abstract. Given their flexibility in interlinking heterogenous data, graph databases are often used 
as a central hub within the enterprise data management ecosystem. While the data graph as such 
can be queried as an integrated data corpus using existing graph query languages (in Amazon 
Neptune, we support both SPARQL as a query language over RDF as well as Gremlin over the 
property graph data model), one key requirement of our customers is to integrate the data graph 
with external, purpose-built data management systems. In this demonstration, we will present 
Amazon Neptune’s approach to synchronize graph data to external systems using Neptune’s 
Change Data Capture (CDC) mechanism. We discuss the design and properties of the CDC fea-
ture and show how it can be used to synchronize graph data to external systems. Exemplified by 
a movie graph database which is periodically updated with new movies, we will showcase a fault-
tolerant cloud architecture leveraging CDC to periodically propagate updates made to the graph 
database into a backing Elasticsearch search index, in order to provide efficient full-text search 
over the graph data. On top of this stack, we demonstrate Neptune’s approach to integrated que-
rying across the data graph and the keyword search cluster. 
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1 Change Data Capture in Amazon Neptune 

While Relational Database systems have been dominating the database market for 
many decades, in recent years we have witnessed an ongoing diversification. Address-
ing the broad range of today’s data processing use cases, the Amazon Web Service 
(AWS) ecosystem follows a purpose-built data management paradigm, offering a vari-
ety of services tailored to and optimized for the specific needs of our customers’ use 
cases. Beyond the classical relational data management systems offered by Amazon 
RDS, AWS services include Amazon Redshift for analytics, Amazon DynamoDB as a 
NoSQL key-value store, Amazon DocumentDB for managing JSON documents, Am-
azon ElastiCache for optimized in-memory processing, Amazon Timestream as a solu-
tion for time series data, as well as Amazon Neptune, a fully managed graph database 
service supporting both the W3C’s RDF/SPARQL [1] and Apache Tinkerpop’s Prop-
erty Graph/Gremlin [2] stack. These core database services are complemented by other 
purpose-built data processing systems such as the Amazon Elasticsearch Service 
providing efficient full-text search functionality, large-scale data analytics services like 
Amazon Elastic MapReduce (EMR), and services such as Amazon SageMaker sup-
porting machine learning workflows and algorithms on top of the data. 
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Within this growing universe of data management and processing approaches, graph 
databases often take a distinguished role: in particular in the context of RDF, which has 
its strengths in data integration from different sources, across different domains, we 
commonly see our customers use graph database as a central hub in their data ecosys-
tem. In such scenarios, it becomes crucial to provide mechanisms that make it easy to 
synchronize graph data (or subsets thereof) with other systems.  
 
Use Cases. In discussions with our customers, we have learned about use cases for 
integrating graph with virtually each of the data management and analytics system in 
the AWS ecosystem, and beyond. A customer in the financial services industry would 
like to provide configurable subscriptions triggered by changes in RDF triple patterns. 
Other customers want to synchronize a secondary RDF (or property graph) store based 
on the primary Amazon Neptune instance, update caches such as ElastiCache to provide 
high-performance access to frequently requested portions of the data, dump graph data 
changes to S3 to facilitate batch processing of graph data via EMR using MapReduce 
or Apache Spark, or keep datasets analyzed in SageMaker using machine learning tool-
chains synchronized with their graph data. Use cases for CDC beyond external system 
synchronization include triggers based on detected updates to entities, e.g. rule re-com-
putation or the re-validation of SHACL [3] constraints after resource updates.  
 
Feature Description. Addressing these use cases, we have developed a graph Change 
Data Capture (CDC) [4,5,6,7] mechanism for Amazon Neptune, which exposes 
changes made to the data via a change log API. The change log is represented as a 
sequence of deltas (either addition to or removal from the data graph), where entries 
have a unique, monotonically increasing event id. Access to the changes is paginated, 
i.e. readers provide the desired starting event id and the max number of changes, and 
get a sequence of changes (wrapped into a JSON document) back as a response. 

When using Neptune over RDF data, changes are reported in N-Quads format [8]; 
over Property Graphs, they are reported at a higher abstraction level, using an edge/ver-
tex centric view. While, from a logical perspective, the information content is identical 
in both cases, the different abstraction levels adhere to the abstraction that the users of 
the two stacks are familiar with and facilitates the reuse of client-side tooling for the 
two stacks, respectively (e.g., the reuse of RDF libraries for parsing change sets). 

CDC in Neptune has been implemented as an opt-in feature. The change logs can be 
fetched using a REST endpoint from either the master instance or any read replica in 
the cluster. This makes it possible to spin up a read replica dedicated for CDC access, 
thus querying change logs without interfering with operational workloads. To keep stor-
age cost contained, change logs older than seven days are automatically purged. 

Neptune’s CDC mechanism is tightly integrated with its transaction system, i.e. the 
change log is maintained as an integral part of each transaction. This makes it possible 
to derive strong guarantees regarding representation and timeliness of changes: 
 
• The change log is complete and correct. There is no look-ahead required, i.e. 

a change written to the log would never be invalidated by a future log entry. 
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• Changes are free of redundancy: for instance, if a SPARQL query attempts to 
delete the same quad twice, the change log will show the deletion only once.  

• Changes are ordered by their effective commit order: this is crucial to guar-
antee that a sequential replay of the change log (e.g. against another RDF store) 
will result in exactly the same database state. 

• Changes are visible immediately: once a transaction has been committed, a 
change API request against the master is guaranteed to return that change. 

 
Connecting External Systems. The previously mentioned properties simplify the im-
plementation of clients consuming the changes: all clients need to do is periodically 
fetch the latest changes and replicate them to the synchronization target in sequence, 
without caring about re-ordering, redundancy, and aspects like deferred invalidation.  

Making it easy to consume and propagate changes shifts the challenge of building 
replication clients towards the operational side, with the key requirement to establish a 
replication architecture that is tolerant towards temporary outages (e.g. coping with 
system upgrades, and temporary fail-over) of the source and target system(s). 

In order to ease the setup of such a fault-tolerant replication system, we provide 
configurable templates that can be automatically deployed via the CloudFormation au-
tomation service (see Fig. 1). By providing just a few instance specific configuration 
parameters (such as application name, the source database endpoint providing the CDC 
API, network configuration, the replication target system endpoint, polling frequency, 
etc.), a fault-tolerant replication stack can be deployed automatically within minutes. 

At its core, the replication stack uses serverless AWS Lambda functions, which are 
periodically triggered via a CloudWatch event rule (obeying the specified polling fre-
quency). When invoked, the Lambda functions send a request to Neptune’s CDC API 
to extract new changes and propagates them to external systems (in the case of our 
demo, Amazon Elasticsearch – but users can implement their own adapters). System 
state (such as the last processed change event id) is maintained in a DynamoDB table. 
To ease operation and debugging, the stack comes with the support of application log 
archival (Amazon Cloudwatch), trace logs (AWS Xray), and metrics and alarms (num-
ber of change logs processed, approximate replication lag in Amazon Cloudwatch). 
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Fig. 1. Blueprint cloud architecture for consuming Neptune’s CDC stream. Solid lines represent 
mandatory, dashed lines optional components. 

Demo. In the demonstration, we will showcase Amazon Neptune’s CDC system in ac-
tion. As a showcase, we will use a movie graph data set that captures relationship be-
tween real movies, actresses/actors and other persons of interest, locations, etc. Going 
beyond plain text indexing (names, titles, descriptions, etc.), we also leverage the geo-
spatial indexing capabilities of Elasticsearch to store and index geo coordinates. Using 
this scenario as a showcase, in the demo we will: 

1. Discuss and demonstrate Neptune’s CDC mechanism for synchronization be-
tween graph and keyword search systems. In particular, we will discuss pos-
sible mappings between the graph data and document-centric systems. 

2. Showcase the creation and operation of a fully functional cloud stack that pe-
riodically replicates data from Neptune to Elasticsearch, in a scenario where 
we continuously update the graph database with new movies. 

3. Execute both stand-alone and hybrid queries over data graphs and the syn-
chronized search cluster, demonstrating integration benefits by means of 
sample requests that combine structural data aspects (provided by Neptune) 
with efficient ranked/fuzzy keyword search, as well as geospatial queries 
(provided by Elasticsearch). Integrated querying is made possible by inte-
grating Elasticsearch via a dedicated SPARQL SERVICE clause that reaches 
out to Elasticsearch during regular SPARQL query evaluation. 

4. Discuss lessons learnt during the design and implementation of CDC for graph 
database, including problematic cases (such as conceptual issues regarding 
blank node scope and semantics when synchronizing multiple RDF databases 
via CDC, or transactional guarantees while replaying CDC streams).  
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