
Triplifying Equivalence Set Graphs

Luigi Asprino1,2, Wouter Beek3, Paolo Ciancarini2, Frank van Harmelen3, and
Valentina Presutti1

1 STLab, ISTC-CNR, Rome, Italy
luigi.asprino@istc.cnr.it valentina.presutti@cnr.it

2 University of Bologna, Bologna, Italy
paolo.ciancarini@unibo.it

3 Dept. of Computer Science, VU University Amsterdam, NL
{w.g.j.beek, frank.van.harmelen}@vu.nl

Abstract. In order to conduct large-scale semantic analyses, it is nec-
essary to calculate the deductive closure of very large hierarchical struc-
tures. Unfortunately, contemporary reasoners cannot be applied at this
scale, unless they rely on expensive hardware such as a multi-node in-
memory cluster. In order to handle large-scale semantic analyses on com-
modity hardware such as regular laptops we introduced [1] a novel data
structure called Equivalence Set Graph (ESG). An ESG allows to specify
compact views of large RDF graphs thus easing the accomplishment of
statistical observations like the number of concepts defined in a graph,
the shape of ontological hierarchies etc. ESGs are built by a procedure
presented in [1] that delivers graphs as a set of maps storing nodes and
edges. In this demo paper (i) we show how facts entailed by an ESG and
the graph itself can be specified in RDF following a novel introduced on-
tology; and, (ii) we present two datasets resulting from the triplification
of two ESG graphs (one for classes and one for properties).

Keywords: Semantic Web · Linked Open Data · Empirical Semantics.

1 Introducing Equivalence Set Graphs

An Equivalence Set Graph (ESG) is a tuple 〈V, E , peq, psub, pe, ps〉. The nodes
V of an ESG are equivalence sets of terms from the universe of discourse. The
directed edges E of an ESG are specialization relations between those equiva-
lence sets. peq is an equivalence relation that determines which equivalence sets
are formed from the terms in the universe of discourse. psub is a partial order
relation that determines the specialization relation between the equivalence sets.
In order to handle equivalences and specializations of peq and psub (see below for
details and examples), we introduce pe, an equivalence relation over properties
(e.g., owl:equivalentProperty) that allows to retrieve all the properties that
are equivalent to peq and psub, and ps which is a specialization relation over

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 Asprino et al.

dbo:Person
foaf:Person

dul:Person
dul:Agent

org:Agent

dul:SocialAgent dul:PhysicalAgent

:myEquivalentClass

owl:equivalentClass

:mySubClassOf

rdfs:subClassOf
rdfs:subClassOf rdfs:subClassOf

owl:equivalentClass

owl:equivalentClass

:myEquivalentClass
owl:equivalentProperty

rdfs:subClassOf:mySubClassOf rdfs:subPropertyOf

(a) RDF Knowledge Graph

dul:Agent, org:Agent

dul:PhysicalAgent dbo:Person,
dul:Person,
foaf:Person

dul:SocialAgent

(b) Equivalence Set Graph

Fig. 1: An example of an RDF Knowledge Graph and its corresponding Equiva-
lence Set Graph.

properties (e.g., rdfs:subPropertyOf) that allows to retrieve all the properties
that specialize peq and psub.

The inclusion of the parameters peq, psub, pe, and ps makes the Equiv-
alence Set Graph a very generic concept. By changing the equivalence rela-
tion (peq), ESG can be applied to classes (owl:equivalentClass), properties
(owl:equivalentProperty), or instances (owl:sameAs). By changing the spe-
cialization relation (psub), ESG can be applied to class hierarchies (rdfs:subClassOf),
property hierarchies (rdfs:subPropertyOf), or concept hierarchies (skos:broader).

Figure 1 shows an example of an RDF Knowledge Graph (Subfigure 1a).
The equivalence predicate (peq) is owl:equivalentClass; the specialization
predicate (psub) is rdfs:subClassOf, the property for asserting equivalences
among predicates (pe) is owl:equivalentProperty, the property for assert-
ing specializations among predicates (ps) is rdfs:subPropertyOf. The corre-
sponding Equivalence Set Graph (Subfigure 1b) contains four equivalence sets.
The top node represents the agent node, which encapsulates entities in DOLCE
and W3C’s Organization ontology. Three nodes inherit from the agent node.
Two nodes contain classes that specialize dul:Agent in the DOLCE ontol-
ogy (i.e. dul:PhysicalAgent and dul:SocialAgent). The third node repre-
sents the person concept, which encapsulates entities in DBpedia, DOLCE, and
FOAF. The equivalence of these classes is asserted by owl:equivalentClass and
:myEquivalentClass. Since foaf:Person specialises org:Agent (using :mySubClassOf

which specialises rdfs:subClassOf) and dul:Person specialises dul:Agent the
ESG contains an edge between the person and the agent concept.

The procedure for computing an Equivalence Set Graph has been presented
in [1]. In the remaining of this document we present how to specify statements
entailed by an ESG and the graph itself in RDF.

2 Equivalence Set Graph Ontology

Figure 2 depicts the ontology for specifying Equivalence Set Graphs in RDF. The
prefix esgs: is associated with the value https://w3id.org/edwin/ontology/.
The solution for modeling ESGs is fairly simple. An ESG is specified as an

https://w3id.org/edwin/ontology/


Triplifying Equivalence Set Graphs 3

Fig. 2: The diagram of the Equivalence Set Graph Ontology expressed with the
Graffoo notation.

individual of the class esgs:EquivalenceSetGraph and it is connected to its
nodes by the object property esgs:hasNode having esgs:Node as range. Nodes
are associated with entities composing the equivalence set by the object prop-
erty esgs:contains. Edges of the graph can be specified as triples having
esgs:isAdjacentTo (or one of its sub-properties) as predicate. Currently the on-
tology declares two sub-properties of esgs:isAdjacentTo, namely esgs:specia

lizes and its inverse esgs:isSpecializedBy (that have been used for the anal-
ysis presented in [1]), but esgs:isAdjacentTo can be furtherly specialized when-
ever the framework is extended to allow the analysis of other kinds of relations.
Individuals of esgs:EquivalenceSetGraph are also associated with the relations
used for building the graph, namely peq, psub, pe and ps, by means of properties
esgs:observesEquivalenceProperty, esgs:observesSpecializationProperty,
esgs:equivalencePropertyForProperties and esgs:specializationProperty

ForProperties. Moreover, the property esgs:computedFrom allows to associate
an ESG with the dcat:Dataset from which the graph has been computed.

Rules. The ontology also defines two rules (in SWRL) that allow to materialise
statements entailed by an ESG:

Equivalence Closure. If equivalence sets of a graph ?g have been formed
using the property ?peq as ground term and two entities ?e1 and ?e2 belong to
the same node ?n (i.e. ?e1 and ?e2 belong to the equivalence set) of the graph
?g, then, ?e1 and ?e2 are declared equivalent by means of property ?peq.

esgs:hasNode(?g, ?n) ∧ esgs:observesEquivalenceProperty(?g, ?peq)∧
esgs:contains(?n, ?e1) ∧ esgs:contains(?n, ?e2) ⇒

swrlb:add(?e1, ?peq, ?e2) ∧ swrlb:add(?e2, ?peq, ?e1)

Specialization. If the following conditions hold: (i) specialization relations
(i.e. edges) of an ESG ?g have been computed using a property ?psub as ground



4 REFERENCES

term; (ii) nodes ?n1 and ?n2 contain the entities ?e1 and ?e2 respectively; and,
(iii) ?n1 specializes ?n2 ; then, we can assert that ?e1 specializes ?e2 by means
of property ?psub.

esgs:observesSpecializationProperty(?g, ?psub) ∧ esgs:hasNode(?g, ?n1)∧
esgs:hasNode(?g, ?n2) ∧ esgs:contains(?n1, ?e1) ∧ esgs:contains(?n2, ?e2)∧

esgs:specializes(?n1, ?n2) ⇒ swrlb:add(?e1, ?psub, ?e2)

3 Planned Demonstration

We plan a live demonstration where the audience will be able to compute and
query a number of Equivalence Set Graphs specified in RDF. Some of Equiva-
lence Set Graphs available for querying will be pre-computed, while others will
be computed live during the demo. Pre-computed datasets include the triplica-
tion of two (very large) Equivalence Set Graphs computed from LOD-a-lot [2]
and presented in [1]: one for classes and one for properties.

Moreover, the audience will be able to compute some (small) Equivalence
Set Graphs using the framework presented in [1]. The framework provides a
simple command line interface that allows the users to input the parameters
needed for computing the ESG, i.e.: an equivalence relation (i.e. peq) and a
specialization relation (i.e. psub) they would like observe (pe and ps will be fixed
to owl:equivalentProperty and rdfs:subPropertyOf, otherwise an ESG for
pe and ps would need to be calculated to retrieve properties in the closure of
peq and psub). Then, the framework will estimate the time needed for computing
the ESG for the input properties so to ensure that the ESG can be computed
during the demo session. Once the ESG is computed, it will be uploaded to a
triple store and available for querying.

In [1] we have shown how Equivalence Set Graphs can be used for performing
statistical observation on modeling style and semantic structure of very large
datasets. In this demonstration our objective is to show that Equivalence Set
Graphs are also useful for retrieving data that are not explicitly asserted in an
input dataset (that could be very large). By querying the triplified ESG a user
is able to retrieve all the entities (e.g. classes, properties, individuals) that are
implicitly equivalent to or specialized by a given entity. This is can be done
even for very large datasets, like LOD-a-lot, without running reasoners or using
property paths that may require expensive computational resources.

References

[1] Luigi Asprino, Wouter Beek, Paolo Ciancarini, Frank van Harmelen, and
Valentina Presutti. “Observing LOD using Equivalent Set Graphs: it is
mostly flat and sparsely linked”. In: Proc of ISWC 2019.

[2] Javier D. Fernández, Wouter Beek, Miguel A. Mart́ınez-Prieto, and Mario
Arias. “LOD-a-lot - A Queryable Dump of the LOD Cloud”. In: Proc of
ISWC 2017.


	Triplifying Equivalence Set Graphs

