
Querying Large-scale RDF Datasets Using the
SANSA Framework

Claus Stadler1, Gezim Sejdiu2, Damien Graux3,4, and Jens Lehmann2,3

1 Institute for Applied Informatics (InfAI), University of Leipzig, Germany
2 Smart Data Analytics, University of Bonn, Germany

3 Enterprise Information Systems, Fraunhofer IAIS, Germany
4 ADAPT Centre, Trinity College of Dublin, Ireland

cstadler@informatik.uni-leipzig.de

{sejdiu,jens.lehmann}@cs.uni-bonn.de
{damien.graux|jens.lehmann}@iais.fraunhofer.de

Abstract. In this paper we present Sparklify: a scalable software com-
ponent for efficient evaluation of SPARQL queries over distributed RDF
datasets. In particular, we demonstrate a W3C SPARQL endpoint pow-
ered by our SANSA framework’s RDF partitioning system and Apache
Spark for querying the DBpedia knowledge base. This work is motivated
by the lack of Big Data SPARQL systems that are capable of exposing
large-scale heterogeneous RDF datasets via a Web SPARQL endpoint.

1 Introduction

Copyright 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

SANSA [4] is an open-source framework which allows performing distributed
computing over large-scale RDF datasets. At its core, it provides high-level APIs
for reading, querying using SPARQL, performing inference as well as analytics
over large-scale RDF datasets. In the recent years, RDF data has grown rapidly.
And, querying the data is essential to browse, search and explore the structured
information. SPARQL, the RDF query language, is very expressive which allows
extracting complex relationships. It takes the description in the form of a query
and returns the information in the form of a set of bindings or a derived RDF
graph. Querying such large amount of data becomes challenging as the size of
the data grows.

To overcome this, many systems have been proposed and developed ([5], [2])
using the Apache Spark1 framework. Apache Spark is a generic-purpose cluster
computing framework which allows running applications in a distributed manner.
Its core abstraction data structure are Resilient Distributed Datasets (RDD) [7]
which are immutable collections of records that Spark uses to distribute the
workload across the cluster. Besides RDDs, Spark has a rich set of high-level
APIs. SparkSQL [1] for SQL-like and structured data processing which allows
querying structured data on Spark programs.

1 http://spark.apache.org/

http://spark.apache.org/

One of such systems, built on the concepts of RDDs and SparkSQL, is Spark-
lify [6] – a scalable software component for efficient evaluation of SPARQL
queries over distributed RDF datasets, already integrated into the SANSA frame-
work. It evaluates SPARQL queries while transforming them into a lower-level
of Spark programs. Our Sparklify query processor interfaces with Apache Spark
and can be used programmatically within Big Data workflow construction and
in SPARQL server mode. In contrast, most of the existing systems only feature
cli-oriented prototypes.

In this demonstration, we present and describe our implementation of the
SANSA SPARQL endpoint. This interface allows access to the RDF data using
the common SPARQL endpoint which provides an easy-to-use method to run
SPARQL queries via the Web2.

This is an accompanying poster paper for Sparklify [6], which was accepted
at the ISWC resource track. The addition made in this demo is the SPARQL
endpoint Web interface for Sparklify, which enables executing SPARQL queries
on-the-fly using the Web interface i.e., without engineering efforts and command
line interfaces.

2 Querying large-scale RDF data: DBpedia as a use case

DBpedia [3] is among the largest and most well-known sources of structured in-
formation on the Web. The public DBpedia SPARQL endpoint3 at present offers
access to 438.336.350 triples representing information in a variety of domains. In
addition, with public downloads of auxiliary information the data size exceeds
a billion triples. Due to its size and variety, DBpedia is often used as a test-bed
for novel Linked Data technology in order to analyze strengths and weaknesses.
For these reasons, we choose to run Sparklify over the DBpedia knowledge base.
The whole pipeline is described below.

Figure 1 depicts the Sparklify architecture. The data (e.g. DBpedia knowl-
edge graph) first has to be loaded on a distributed file system (Step 1). In our
case, we use Hadoop Distributed File System (HDFS) for storing the RDF graph
that SANSA can read efficiently. Afterwards, data ingestion is performed (Step
2). SANSA reads RDF data into an initial RDD of triples. Sparklify applies data
partition in parallel over the initial RDD (Step 3, part one). This partitioning
facilitates fast querying by giving both the SPARQL-to-SQL rewriter and the
Spark processor additional opportunities for pruning during static query analy-
sis. These partitioned data are then queried, based on the input SPARQL query
(Step 1) using the Sparq lify system – a SPARQL to SQL rewriter. This lever-
age the potential of the optimizers of both the rewriter as well as those of the
underlying frameworks for SQL. The raw output of a query execution is a pair
comprised of the resulting RDD together with a mapping for construction of the
corresponding SPARQL result set, i.e. a set of bindings. The mapping associates
each of the requested SPARQL query’s result variables with an expression over

2 Demo. resources: https://github.com/SANSA-Stack/SANSA-Examples
3 https://dbpedia.org/sparql

https://github.com/SANSA-Stack/SANSA-Examples
https://dbpedia.org/sparql

R
D

F
D

at
a

RDF Layer
Data Ingestion

Partitioning

Query Layer
Sparklifying

Views Views

Distributed Data
Structures

SANSA Engine

1

2

3

4

5

Fig. 1. Sparklify SPARQL endpoint.

the RDD schema, such that from each RDD row a corresponding binding can be
computed. Hence, the output is again a distributed data structure which can fur-
ther processed in a distributed fashion (Step 4) or visualized or as a result set of
records (Step 5). Figure 2 demonstrates reuse of a third-party SPARQL-based
Wikidata visualization app4 for DBpedia data served with SANSA.

3 Conclusion

Processing and querying RDF data becomes challenging when the size of the
data increases. To solve it, many systems have been proposed and try to solve it
using the distributed computing framework. Most of the existing systems mostly
are cli-oriented prototypes. This brings many confusion and a lot of engineering
effort in order to run SPARQL queries over it. Most of the users, who are familiar
with the semantic web technologies, are capable of writing SPARQL queries. But,
when it requires cluster configuration, and running prototypes from the source; it
is considered as a dead-end. Therefore, we wanted to bring Sparklify – a scalable
software framework for efficient evaluation of SPARQL queries over distributed
RDF datasets. It contains a user interface as a SPARQL endpoint for easy to
write and query RDF data distributed across the Spark cluster.

Acknowledgment

This work was partly supported by the EU Horizon2020 projects BigDataO-
cean (GA no. 732310), Boost4.0 (GA no. 780732), SLIPO (GA no. 731581) and
QROWD (GA no. 723088).

4 https://github.com/stevenliuyi/wikidata-visualization

https://github.com/stevenliuyi/wikidata-visualization

Fig. 2. Dataviz on SANSA’s Spark-powered SPARQL endpoint.

References

1. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: Relational Data
Processing in Spark. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data. pp. 1383–1394. SIGMOD ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2723372.2742797, http://doi.acm.org/
10.1145/2723372.2742797

2. Graux, D., Jachiet, L., Genevès, P., Layäıda, N.: SPARQLGX: Efficient Distributed
Evaluation of SPARQL with Apache Spark. In: Groth, P., Simperl, E., Gray, A.,
Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) The Semantic Web –
ISWC 2016. pp. 80–87. Springer International Publishing, Cham (2016)

3. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web Journal 6(2),
167–195 (2015), http://jens-lehmann.org/files/2014/swj_dbpedia.pdf

4. Lehmann, J., Sejdiu, G., Bühmann, L., Westphal, P., Stadler, C., Ermilov, I., Bin,
S., Chakraborty, N., Saleem, M., Ngonga Ngomo, A.C., Jabeen, H.: Distributed
semantic analytics using the SANSA stack. In: ISWC Resources Track (2017)

5. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on Spark. Proc. VLDB Endow. 9(10), 804–815 (Jun 2016)

6. Stadler, C., Sejdiu, G., Graux, D., Lehmann, J.: Sparklify: A Scalable Software Com-
ponent for Efficient Evaluation of SPARQL Queries over Distributed RDF Datasets.
In: Proceedings of 18th International Semantic Web Conference (2019)

7. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. pp. 2–2. USENIX
Association (2012)

https://doi.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2723372.2742797
http://jens-lehmann.org/files/2014/swj_dbpedia.pdf

	Querying Large-scale RDF Datasets Using the SANSA Framework

