

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Transactional Guarantees for SPARQL Query Execution
with Amazon Neptune

Brad Bebee1, Ankesh Khandelwal1, Sainath Mallidi1, Bruce McGaughy1,
Simone Rondelli1, Michael Schmidt1, and Bryan Thompson1

1 Amazon Web Services, Seattle, WA 98101, USA

Abstract. Amazon Neptune is a fast, reliable, and fully managed graph database service, de-
signed to efficiently store and query highly connected data. Neptune supports both the Apache
Tinkerpop Gremlin stack as well as the RDF/SPARQL W3C standards. Designed to support
highly concurrent OLTP workloads over data graphs, ACID support is a key feature of Neptune.
While the W3C SPARQL standard deliberately does not define transaction semantics for
SPARQL query processing, we learned from our customers that transactional guarantees are
crucial in the context of concurrent read-write workloads against the data graph. In this presen-
tation, we sketch use cases in which transactional guarantees are essential to avoid data anoma-
lies, highlight aspects in which graph data transaction requirements differ from transactional
systems in classical relational databases, sketch the transactional guarantees provided by Ama-
zon Neptune, and discuss implementation aspects of Neptune’s transaction system.

Keywords: RDF, SPARQL, OLTP, Transactions, Amazon Neptune

1 Transactional Guarantees for SPARQL

The SPARQL standard, unlike SQL, does not define any transaction semantics. What
we learned in discussions with our customers, however, is that transactional guaran-
tees (and, evenly important, knowledge about which guarantees do hold) are crucial to
build reliable applications on top of graph databases. While transactional guarantees
for triple stores are not new, in this presentation we discuss the challenges, experienc-
es, and conceptual issues encountered when designing Neptune’s transaction system.

A typical use case we’re seeing for RDF is data integration, where data is assem-
bled from different sources. Data extractors may run and update the same entity in
parallel. As a motivating example, assume we have two triples describing an entity
:Person1 with rdf:type :Person and :name “John Doe”. Now assume two concur-
rent transactions, one adding a triple to the person, the other deleting all its triples:

 tx1: INSERT { :Person1 :age 23 } tx2: DELETE { :Person1 ?p ?o }

Depending on the execution order and transactional guarantees, different outcomes
are possible: if tx2 runs strictly after tx1, it may see the change made by tx1 and de-
lete all triples for the person; otherwise, we may end up with a “dangling” triple
:Person1 :age 23, where dangling refers to the fact that the entity is somewhat
incomplete now (in particular, untyped). This may harm the correctness of applica-
tions that do (want to) rely on the fact that all subjects in the database are typed.

2

What makes this example different from transactions in the relational world, where
it would naturally translate into a conflicting row update vs. delete over a Person
table, is that RDF decomposes data into triples. Most notably, when executed individ-
ually, tx1 and tx2 operate over totally disjoint sets of triples. Hence, no lock over a
single triple would ever prevent the transactions to perform concurrent modifications
– yet there is a logical connection in the sense that both transactions modify the same
entity. Applications built on top of RDF tend to have such an “entity centric” view of
the data, so there are often strong requirements to lock the entity as such.

We see use cases for transactional guarantees across all industries, in particular in
scenarios where RDF is used to integrate data from different source systems. Exam-
ples include ontology based product catalogs that are periodically aggregated from
different sources, IT-level assets aggregated from different inventory and monitoring
systems, or the challenge of capturing change in dynamic social network applications.

Neptune isolation levels. Neptune supports snapshot isolation for read-only que-

ries and read-committed-without-phantoms isolation for update queries. Reads for
both read-only and update queries avoid all three phenomena of dirty, nonrepeatable,
and phantom read. Nonrepeatable read is satisfied because triples cannot be updated,
they have to be deleted and newly inserted. Read-only queries never see changes from
concurrent transactions. Update queries see committed changes, yet locking (cf. next
paragraph) prevents inserts and deletes into index ranges after they have been read,
thus guaranteeing repeatable read. Hence, whenever an update query sees a change
from a concurrent query, it is as if it started executing after the latter completed.

SPARQL update queries have an implicit or explicit WHERE clause that is execut-
ed prior to its INSERT or DELETE part. Evaluating this WHERE clause takes shared
locks on all the triples visited during the evaluation, to prevent any deletions. In order
to facilitate entity level locking, we employ so-called prefix locks. For example, while
evaluating the (implicit) WHERE clause for tx2, the entire prefix spanned by
:Person1 is locked, preventing any triples with this subject being inserted or deleted
by concurrent transaction. If Neptune encounters any uncommitted matching triple
from a concurrently executing query, the evaluation of the WHERE clause is blocked
until that query completes. This helps detecting conflicts between reads and writes.
We wait a few seconds for conflicts to resolve or else rollback the query.

Based on these guarantees, we can safely rewrite our example by changing tx1 to:

 tx1: INSERT { :Person1 :age 23 } WHERE { :Person1 rdf:type :Person }

A dangling triple could now no longer arise: if the transactions run concurrently, tx2
does lock the prefix range for :Person1, preventing tx1 from concurrent insertion; if
tx1 runs after tx2, it would no longer see the rdf:type triple and become a no-op.

In the presentation we will discuss customer use cases that require strong transaction-
al guarantees, describe Neptune’s transaction system, and sketch recipes for building
applications that leverage its transaction guarantees to overcome the conceptual gap
between a triple-based data model and an entity centric view over the data.

