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Abstract. Data linking is understood as the task of establishing typed
links between entities across different RDF datasets via the help of auto-
matic link discovery systems. Based on decades of research and practice
in the Web community, the current paper speculates on the need of a
paradigm shift when it comes to designing such systems. We depart from
the premise that the current state-of-the-art focuses on genericness and
automaticity, while not paying sufficient attention to the particular prop-
erties and nature of the underlying data and the ensuing linking problem
types. We draw new research axes, upon which the data linking task will
be redefined as automatic detection of the type of linking problem at
hand based on the characteristics (profiles) of the candidate datasets.1,2

Linked data and its underlying technologies have been gaining popularity
over the past years, due to the means they offer for data reuse and federation,
increased visibility and sharing on the web and facilitated exchange of metadata.
We define the problem of data linking as that of automatically establishing typed
links between the entities of two or more RDF datasets or graphs. A variety of
data linking systems have been proposed over the past 15 years within the Web
community with interactions with government, cultural or research institutions
as major linked data consumers and providers. As a result, vast amounts of linked
data already exist on the Web (we refer, for example, to the LOD project). A
number of benchmarks are developed and shared publicly in order to provide
frameworks for the evaluation of data linking systems, driven by the well-known
OAEI campaign, or the more industry-oriented EU HOBBIT project.3

Where are we now. State-of-the-art research into data linking [1] goes in two
main directions: (1) proposing novel generic data linking systems and (2) de-
veloping methods for automatic link specification by (semi-)supervised machine
learning techniques, in order to assist the configuration and tuning of established
tools. Several of the most common systems, such as SILK [2] and LIMES [3],
adopt a property-based link-discovery strategy: a set of predicates has to be
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selected before the system proceeds to compare their values by the help of (an
aggregation of) similarity measures that also need to be selected and tuned. This
configuration task can be demanding in terms of user involvement in real-world
scenarios. Hence, a number of methods have been proposed to assist the users
in the configuration process. Properties to compare can be selected by the help
of key discovery tools. While many approaches exist (e.g., [4]), their use for data
linking is not straightforward because they often produce a large number of keys
that are valid on a single dataset with no assessment of their likelihood to dis-
cover links. On the other hand, automatic link specification learning approaches
develop (semi-)supervised techniques to select and combine similarity measures
and fix their thresholds. Systems like EAGLE [5] and WOMBAT [6] are included
in LIMES, just as ActiveGenLink [7] is part of SILK.

Most existing linking approaches have in common the fact that they attempt
to solve the problem from a generic stance by remaining vastly agnostic to the
nature of the underlying data [1]. Many systems achieve good results on ded-
icated benchmarks [8], but fail to take into account the particularities of the
various domains and/or data generation practices that raise very specific het-
erogeneity issues calling for a significant user input. In particular, the user is
required to have an in-depth understanding of both their data and the internals
of the linking system of choice in order to achieve satisfactory results, as shown
in [9]. The quest to fully automate the linking task, on which recent research has
departed, remains rather challenging, as investigated in [10]: a heavy machinery
of learning link specification rules is being developed to only partially assist the
users in the selection of parameters in the pre-processing step of the linking task.

Rethinking the data linking task. We argue that the current generic ap-
proach to develop data linking solutions has reached its limits and suggest that
a paradigm shift in the way we look onto this task needs to take place. We pro-
pose to enable the development of data-centric approaches for bottom-up linking,
rather than investing efforts in divising incremental generic solutions: time has
come to step back and look at what we can learn from the large amount of
existing cross-dataset links and linking systems.

We formulate the arguably outrageous hypothesis that there exist a finite
number of identifiable and generalisable types of linking problems, defined as
heterogeneity types that two to-be-linked datasets can manifest, e.g. differences
in terminology, natural languages or structure, as presented in [10]. Additionally,
we hypothesise that these linking problems can be detected automatically by the
help of machine learning (ML) models trained on sufficiently large amounts of
quality linked data. On the other hand, state-of-the-art linking tools are based
on modules (we will call them atomic or modular solutions), that allow to han-
dle separately many of these linking problem types (e.g., measure the string or
semantic similarity of entities). On these bases, we redefine the data linking task
as that of the automatic identification via ML techniques of the linking problem
type(s) that two datasets manifest and the application of an automatically gen-
erated combination of atomic linking solutions that are best fit for the datasets
at hand. We propose to lean upon the wealth of existing linked data sets, par-



ticularly those coming from real-world scenarios, in order to enable training and
validation of ML models, while a number of RDF graph profiling and graph em-
bedding methods will be applied in order to extract the necessary features for
these models.

Proposed solution and challenges. Based on the hypotheses formulated
above, we propose to direct future research and engineering effort into the de-
velopment of a data-centric bottom-up linking framework that channelizes and
consolidates existing disparate efforts. This will allow to build on the wealth of
linked RDF graphs via their in-depth analysis and consolidation and take advan-
tage of years of research and practice in the field (cf. Fig. 1). We identify a set
of research axes and associated challenges on the way to realize this framework.

Fig. 1: Conceptual overview of the proposed framework.

(1) Linked data harvesting and analysis. This axis consists in the consolida-
tion of a large amount of already existing quality linked Web data, benchmarks,
evaluation campaigns and linked data projects from a large variety of domains.
An in-depth statistical analysis of these data will allow to identify a number of
limited and generalisable linking problem types, discover correlations between
application domains and data structure or quality, or between heterogeneity
types and link density. This will inform the feature design in (2) and will gener-
ate training data for the automatic classification of pairs of datasets according to
their linking problem type(s). Challenge: We need to ensure high quality of the
links from which we will learn. Hence, we propose to rely on existing real-world
benchmarks as a starting point, where datasets are often grouped according to
specific heterogeneity criteria (terminology, logics, structure, etc) that can be
mapped to the identified linking problem types. Alternatively, one can apply
existing linking methods of high precision in a preprocessing step. Relying on a
large variety of data sets and domains is important to guarantee representativity.

(2) Joint datasets feature design. This axis involves data linking-oriented
graph profiling and feature extraction via state-of-the-art RDF graph profiling
techniques [11] and joint graph embeddings methods (learning vector represen-
tations jointly on a pair of graphs). It will generate the set of features that
describe jointly the linking candidate datasets and are indicative of the het-
erogeneities that they manifest, necessary to train the ML algorithms. Thus,



we aim to answer the question of what is it that discriminates between two
pairs of datasets manifesting two different types of linking problems. Challenge:
A large plethora of RDF dataset profiling methods and tools exist (reviewed
in [11]), allowing to extract and represent the graphs in terms of a number of
“profile features”, such as their domains, connectivity, representative instances,
quality, provenance, statistics, dynamicity, etc. Under the hypothesis that these
features in combination account for describing the datasets from aspects that
match the linking problems identified in (1), a significant challenge consists in
identifying the set of features that are necessary and sufficient in order to design
efficient linking problem classification ML models. In addition, from a practical
viewpoint, the application of the methods that allow for the extraction of these
features is not straightforward, as outlined in [11]. Finally, we will be interested
in extracting joint profiles for a pair of datasets, which is not explicitly addressed
in the literature. In that respect, profile features can be coupled with graph em-
beddings learned jointly on a pair of RDF graphs, which is a novel problem in
the community [12].

(3) Learning and applying ML models. This axis will rely on the training data
harvested in (1) and the features extracted in (2) in order to define and apply
classification models for linking problem type detection. Challenge: We identify
here the standard challenge of selection and tuning of ML model(s) from a set
of supervised algorithms. In addition, the multitude of possible classes will lead
us beyond the standard binary classification task.

(4) Filling in “a shelf” of automatic, adaptable, modular solutions for each
of the linking problems identified in (1). We rely on the premise that a linking
problem type is fine-grained enough so that a particular modular solution can be
applied to it (for example, relying on lexical synset intersection for synonymy-
type heterogeneity). These modular solutions will be identified by a comparative
analysis of the modules and respective performances of a large spectrum of exist-
ing data linking systems, as this has been in part performed in [1]. Challenge: A
significant effort will be involved in the association of state-of-the-art atomic so-
lutions to the data linking problem types identified in (1). In the lack of training
data, unsupervised ML models have to be divised, enhanced by a human-in-the-
loop approach.
Conclusion. Instead of trying to fit a generic solution to any linking problem
and dataset type, we suggest to enable a better understanding of the underlying
data before applying a targeted solution best suited to the particular datasets
at hand. We rely on the premise that the in-depth analysis of large amounts
of linked data will allow to isolate a limited number of identifiable data linking
problems that ML models based on datasets profiles will help detect automati-
cally. The moment is appropriate to take this approach for reasons of, one the
one hand, the large and growing availability of linked data in an ever greater
number of domains and, on the other hand, the existence of a large plethora
of data linking tools, result of decades of research and practice. We hypothesise
that channelizing these decentralised endeavours will foster and facilitate the ap-
plication of linked data technologies within and across an even larger variety of
domains and will ultimately free the domain expert of the technological burden.
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