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Abstract. This paper describes the activities related to the implemen-
tation of a robotic arm controller based on the Damped Least Square
algorithm to numerically solve Inverse Kinematics problems over a het-
erogeneous MPSoC platform.
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1 Introduction

The H2020 CERBERO [7] project is developing a continuous design environment
for Cyber Physical Systems (CPS), leveraging on a large set of tools that support
both run-time and design-time issues of CPS [21]. One of the main outcomes of
the project, beside the continuous design framework, is the extensive and efficient
support for run-time adaptation [22]. The algorithm and demonstration set-up
presented below is compliant with CERBERO Planetary Exploration (PE) use-
case scenario, which is built using CERBERO technologies and aims at assessing
heterogeneous and reconfigurable Multi-Processor System on Chip (MPSoC) so-
lutions in space applications. The final demonstrator of this scenario will be the
controller of a robotic arm implemented over a Field Programmable Gate Ar-
ray (FPGA) device, with advanced self-monitoring and self-adaptive processing
capabilities to ruggedize the systems under stringent survival conditions (radi-
ation and harsh environment) and meet the reliability constraints of a robotic
exploration mission. In this work we present the preliminary implementation of
such controller using the Damped Least Square algorithm [9,10].
Demonstrator Setup: The setup used for testing purposes is composed by: (1)
a Digilent/Xilinx ZedBoard, (2) a Trossen Robotics WidowX robotic arm, (3)
Power supplies for both the robotic arm and the ZedBoard and (4) a Personal
Computer.
The manipulator is a WidowX Robot Arm by Trossen Robotics, characterized by
four main Degrees of Freedom (DOF) plus other two DOF for wrist and clamp
movements. The manipulator is equipped with six Dynamixel actuators, and
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Fig. 1: Demonstrator Setup.

each of them provides a full control of the relative joint via a digital communica-
tion using an Universal Asynchronous Receiver-Transmitter (UART) protocol.
For each actuator, several parameters can be controlled, such as the angular
position, speed and acceleration.
The external controller is based on a Digilent/Xilinx ZedBoard equipped with a
Zynq®-7000 MPSoC. A Linux-based Operating System (OS) distribution run-
ning on the Zynq ARM processor provides the environment to compile and
execute the Inverse Kinematics (IK) algorithm and to control the manipulator
actuators.
The Personal Computer (PC) is used to design the IK application and, if neces-
sary, compile and upload its executable on the MPSoC via Ethernet connection.
The numerical control of the robotic arm is entirely delegated to the ZedBoard.

2 Forward and Inverse Kinematics

Any robotic manipulator is composed of different parts, namely: (i) a base; (ii)
rigid links; (iii) joints (each of them connecting two adjacent links); and (iv) an
end effector. As shown in Figure 2, physically an angle can be associated to each
rotational joint, or a displacement for a prismatic joint. The end effector can
be characterized by specific spatial coordinates. To determine the end-effector
spatial coordinates or the angles for each joint, you could leverage on two differ-
ent techniques: computing the end-effector spatial coordinates from all the joint
angles, or computing the joint angles from a desired end-effector spatial coordi-
nate. The former is known as Forward Kinematics problem (FK), the latter as
Inverse Kinematics problem (IK). In the following we will focus on IK. Indeed,
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implementing an arm controller you need to derive the angles of the joints of the
chosen arm to move it in a desired position.

Fig. 2: A generalized robotic manipulator.

Inverse Kinematics problem: Inverse Kinematics typically requires to solve a
complex problem, since: (i) more than a solution can be found for a desired end-
effector position, for example elbow-up or elbow-down poses could both lead to
reach the same spatial coordinate; (ii) there could be joint angles limitations; and
finally, (iii) out-of-reach end-effector spatial coordinates could be experienced.
These limitations define the manipulator workspace, and an attempt to get over
them can lead to a singularity in the IK problem. Many solutions, numerical
and non-numerical ones, are present in literature [8]. Numerical methods re-
quire various iterations to converge over a solution, but are better capable of
dealing with DOF, and multiple end effectors (e.g. fingers of a hand or arms
of a body) with respect to analytic solutions and data-driven methods. Among
the numerical solutions we can list: Heuristic methods and Cyclic Coordinate
Descendant ones [32]; Newton-based methods (exploiting second-order Taylor
expansion), and Jacobian-based methods (exploiting inverted, pseudo-inverted
and transposed Jacobian matrices) [9,10]. In this work we opted for the latter.

3 Jacobian-based methods

3.1 Fundamentals

Jacobian-based methods are based on the Jacobian matrix [17], defined as:

f : Ω ⊆ Rn → Rm Jf (x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1∂xn
(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2∂xn
(x)

...
...

. . .
...

∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm∂xn
(x)

 ∈ Rm,n

Such a matrix represents a transformation between two time derivative-related
spaces, the Cartesian space and the velocity space. The latter can be related to
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the velocity joints space. Considering the following equation:

∆
−→
Θ = J†∆−→e (1)

∆
−→
Θ is the joint space vector, ∆−→e is the error or displacement vector and

J† (see Section 3.3) is a matrix computed from the Jacobian matrix J . The
∆
−→
Θ and ∆−→e vectors are defined as: ∆

−→
Θ = [∆θ1 ∆θ2 ... ∆θn]T and ∆−→e =[

∆x ∆y ∆z δx δy δz
]T . Please note that [∆x ∆y ∆z ]T defines a linear displace-

ment, and [ δx δy δz ]T defines a rotational displacement. In our case we consider
linear displacements only with [ δx δy δz ]T = [ 0 0 0 ]T . The trajectory will be
calculated from the values assigned to [∆x ∆y ∆z ]T .

3.2 Inverse Kinematics Calculation

In order to obtain the integral angles from the joint space, ∆
−→
Θ, we need to add

them to the previous thetas,
−→
Θ old , to obtain:

−→
Θnew =

−→
Θ old +∆

−→
Θ . This step

is normally iterated several times. At any iteration, once obtained the
−→
Θnew

vector, this is used as starting vector to compute
−→
Θnew in the next step, thus

becoming
−→
Θ old. This procedure is equivalent to calculate the defined integral of

thetas along the trajectory. The trajectory itself is defined by initial and final
end-effector coordinates. The former are computed solving a FK problem, which
requires to know the angles assumed by the manipulator in the initial position;
while the latter are defined as the desired position to be reached. The general
flow of Jacobian-based IK algorithms is shown in Figure 3.

Fig. 3: Jacobian-based IK algorithms flow diagram

Prior to execute the algorithm, the displacement vector must be defined as:

∆−→e =
[
xfin−xinit

i+1
yfin−yinit

i+1
zfin−zinit

i+1 0 0 0
]T

, where xinit, yinit, and zinit rep-
resent the initial point coordinates, xfin, yfin, and zfin the coordinates of the
final position that the end effector must reach, and i is the iteration parameter.
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3.3 Computing the J†

There are several methods [9] to compute J†, such as: transpose of J , pseudo-
inverse of J , SVD-based computing, Damped Least Squares (DLS). The first and
the second ones cannot handle properly events such as singularities. The third
is based on the eigenvalues and eigenvectors computing at high computational
costs. Then we opted for the DLS.
Damped Least Square TheDamped Least Square, also known as the Levenberg—
Marquardt algorithm [10], computes the J† as:

J† =
(
JTJ + λ2I

)−1
JT (2)

Using Equation (2), the Equation (1) can be expressed as:

∆
−→
Θ =

(
JTJ + λ2I

)−1
JT∆−→e (3)

Equation (3) uses a λ factor to handle singularities. This factor can be set as a
static parameter, which has to be defined a priori before starting the computa-
tion, or as a dynamic one to be calculated at run-time, between two subsequent
iterations. In the second scenario, to choose dynamically the λ factor several
algorithms [13]. At the moment we use a static approach to determine λ, but in
future we plan to dynamically derive it using the Sugihara method [27].

4 Manipulator characterization

In order to obtain the Jacobian J and the J† matrices a preliminary manip-
ulator characterization is necessary. The manipulator has to be defined as a
mathematical model, and from this model the Jacobian matrix J associated to
the manipulator can be calculated and used in the DLS algorithm. A common
way to define a mathematical model of a robotic manipulator uses the Denavit-
Hartenberg (DH) parameters [26]. A set of four parameters composed of two
angles (α and θ) and two displacements (a and d) is defined for each link-joint
group. These parameters are obtained from the manipulator mechanical dimen-
sions and joint orientations, as shown in Figure 4.
For each set of parameters a transformation matrix is defined as:

n−1Tn =


cos θn − sin θn cosαn sin θn sinαn an cos θn
sin θn cos θn cosαn − cos θn sinαn an sin θn
0 sinαn cosαn dn
0 0 0 1

 (4)

This transformation matrix represents the position and the orientation of the
nth-joint respect to the previous one. For an N -joints manipulator there will be
N transformation matrices. The general transformation matrix is defined as the
chain product of each transformation matrix:

T =0 T 1
1 T2 . . .

N−1 TN =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (5)
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Ji ai (cm) di (cm) αi (rad) θi (rad)
1 0 0 π

2
θ1

2 15 0 −π θ2
3a 5 0 0 π

2

3 15 0 0 θ3
4 15 0 0 θ4

Table 1: DH parameters
Fig. 4: Graphical representation of
DH parameters

This matrix represent the end-effector spatial coordinates and orientation re-
spect to the manipulator base coordinates. The derived DH parameters for our
test manipulator are tabulated in Table 1, and can be used in Equation (4) and
Equation (5) to obtain the general transformation matrix orientation coefficients
for our manipulator (nx, ny, nz, ox, oy, oz, ax, ay, and az), the position coeffi-
cients (px, py, and pz) and the manipulator Jacobian according to the theory in
[17].

Please note that the coefficients px, py and pz are representing the end-effector
spatial coordinates with respect to joint angles, representing the manipulator
FK. As stated in Section 3.2, FK is necessary to compute the initial point for
the algorithm.

5 Porting the DLS over an Heterogeneous MPSoC

In the scope of the CERBERO project, one of the goal is to access Programmable
Logic (PL) within FPGA technologies with the purpose of offloading compu-
tational intensive tasks by delegating them to custom hardware accelerators.
Figure 5 shows the steps of the entire workflow. The steps within the graph are
explained in details hereafter.

1. Inverse Kinematics MATLAB Description: The IK algorithm has been
implemented and tested in a native matrix-oriented MATLAB® environ-
ment. It allows various optimized computations such as the Jacobian matrix
automatically derived from the DH description. Using MATLAB, the en-
tire error-prone process of generating C-code is speeded up. Result of the
assessment for this step are presented in Section 6.

2. C - code: This first description of the DLS algorithm in C code is, here,
automatically generated by using MATLAB Coder [1].

3. Parameterized and Interfaced Synchronous DataFlow (PiSDF) De-
scription [12]: This is a key step and it is manually executed: the full robotic
arm application is described using the PiSDF Model of Computation (MoC).
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1
Inverse Kinematics

Matlab Description

2
C - code

3
PiSDF Description

4
S-LAM Description

5

Mapping/Scheduling

6

Multicore SW 

Code Generation

7

ZedBoard HW/SW 

Code Generation

8

Robotic Arm

Actuators

Physical System

Cyber System

Fig. 5: Design Workflow: step-by-step description.

The previously generated C-code is used to described the internal behavior
of its actors. Fig 6 provides a PiSDF description of the DLS.

4. System-Level Architecture Model (S-LAM) description [24]: The
strength of PREESM is to give the possibility of independently describe (i)
the algorithm and (ii) the architecture. Thus, PREESM will be in charge
of finding an optimal solution by mapping and scheduling every instance of
actors of the PiSDF onto the S-LAM.

5. Mapping/Scheduling [23]: This functionality is embedded in the PREESM
toolflow: when the problem is correctly defined, the tool schedules the algo-
rithm upon the architecture using heuristic methods [2].

6. Multicore SW Code Generation: The Directed Acyclic Graph (DAG)
produced by PREESM is internally used by the workflow to automatically
generate a C code with multiple threads (Pthreads of the C-standard). The
code is, now, ready to be compiled and tested on the target architecture (in
this case on the two A9 ARM cores of the Zynq MPSoC). The efficiency of
the approach was demonstrated for shared-memory MPSoC [11] (as the case
of the Processing System (PS) of the ZedBoard).

7. ZedBoard HW/SW Code Generation: This step is not fully completed.
A first HW/SW code generation can be obtained by feeding Vivado SDSoC
with a PiSDF tested in PREESM [30,28] (for further details see the PREESM
tutorial [3]). As a starting point, a profiling of the application is necessary
for the identification of the most computationally intensive tasks that could
be accelerated. When the design requirements imply flexibility of the appli-
cation, the proposed design flow could be integrated with the multi-grain ap-
proach presented in [14], which offers to the developer the possibility to play
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with the main reconfiguration strategies (Dynamic Partial Reconfiguration
(DPR) [18] and Coarse Grain Reconfiguration (CGR) [31]). In the CER-
BERO toolchain, these methods are implemented respectively by ARTICo3

[25] and MDC [4,16,15]. Furthermore, a self-adaptive behavior which allows
the automatic reconfiguration of the system is often a desirable property.
In this context, a proper monitoring of the hardware and software tasks is
required. PREESM is already integrated with PAPIFY [5,20], a tool based
on PAPI [6] that eases access to the Performance Monitor Counters (PMCs)
already available on the CPUs for heterogeneous systems, and is able to pro-
vide a unified interface to access also custom monitors placed in the HW
accelerators [19,29].

8. Robotic Arm Actuators: The generated C code is ready to be compiled
(if computationally possible on the ARM cores) and executed directly on the
ZedBoard which is in charge of driving the actuator for moving the WidowX
in the Physical world.

Following the workflow proposed, it is clear that the big effort resides in de-
scribing the application using the Dataflow MoC (point 3 of Fig.5) and in the
High-Level Synthesis (HLS) description of the hardware accelerators. All the
other steps are fully-automated [28] and well documented by online available
tutorials. Also, the workflow is a valid demonstrator of the different tools devel-
oped within the CERBERO H2020 project. The entire chain is applied to design
and prototype a live demo where we successfully use the DLS IK algorithm to
control a robotic arm directly connected to the MPSoC.

Fig. 6: Hierarchical PiSDF description the DLS in PREESM.

6 DLS algorithm assessment

The DLS algorithm has been implemented in MATLAB® environment for pre-
liminary simulation tests prior to the porting onto the ZedBoard. The tests
carried out have evaluated the percentage error in the end-effector position and
the execution time while varying the number of iterations and λ, as reported in
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(a) (b)

(c) (d)
Fig. 7: (a) Percentage error vs. iterations (λ=0.5), (b) Percentage error vs. λ
(iterations=500), (c) Execution time vs. iterations (λ=0.5), (d) Execution time
vs. λ (iterations=500). Target = [ 10 10 10 ] has been considered for all plots.

Figure 7. The percentage error is substantially constant for a number of itera-
tions greater than 400 and for any λ in the interval (0, 1], while the behaviour of
the execution time is monotonic crescent for an increasing number of iterations
or with a λ in proximity to zero. Increasing λ, the execution time is reduced on
average. By the observations above, λ can be chosen as a static factor in the
interval [0.4, 1]. A python simulator has been also used prior to the execution on
the manipulator. Given the set of calculated angles per iteration, the simulator
produces an animated 3-D model of the manipulator, as in Figure 8.

The execution times related to the actors of the PiSDF description have been
also evaluated. In Table 2 are reported the values with respect to the graph firing.
These take into account the repetitions of the DLS subgraph within an only one
PiSDF execution. Indeed, the number of steps to obtain the trajectory (the
input parameter iterations) leads to a significant timing increment of the DLS
sub-blocks. For this reason, a hardware acceleration can be considered in order
to reduce processing time and power consumption.
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(a) (b)
Fig. 8: Simulated (a) initial and (b) final manipulator poses.

Table 2: Evaluation of the execution times on Zedboard ARM cores with iter-
ations = 100. Values are reported in micro seconds, clock cycles (with respect
to the 650-MHz chip frequency) and percentage with respect to the sum of the
actor execution times.

Actor Repeats Execution Time
per Graph Firing

[unit] [µs] [x109 cc] [%]
Init 1 2 1.30 0.10
FK 1 22 14.30 1.11

FiringDLS 1 9 5.85 0.45
DLS: J_Matrix iterations 700 455.00 35.29
DLS: J2_Matrix iterations 400 260.00 20.16

DLS: Min iterations 200 130.00 10.08
DLS: J2Cof_Matrix iterations 300 195.00 15.12

DLS: Theta iterations 400 260.00 20.16
DataSender 1 149 96.90 7.51

7 Conclusions and Next Steps

The work presented in this paper is part of the CERBERO H2020 project assess-
ment. This implementation is intended to be used to prospectively demonstrate
the benefits of using heterogeneous MPSoC technologies in the field of space
applications. The current baseline demonstrator solves computational intensive
and iterative Inverse Kinematics algorithms to determine the trajectory of a
robotic arm. Prospectively this baseline setup will be extended to show how ro-
bustness to faults and different trade-off executions can be successfully addressed
using reconfigurable technologies and heterogeneity. As already mentioned, as a
natural evolution of the work, specific hardware accelerators are going to be cre-
ated with a special focus on performance improvements and fault tolerance. The
challenge will be coped by making use of the new technologies developed within
CERBERO as discussed in Section 5.
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