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Abstract. Current mainstream approach to sensor data monitoring usu-
ally relies on cloud access: samples are acquired by connected devices and
data processing is performed on remote servers. To improve responsive-
ness, security and resilience, devices and programming methodologies
must be improved, with the aim of enabling data analytics at the edge.
Unfortunately this is not an easy task, especially in the IoT domain.
In this paper, we present a research approach that manages at runtime
the hardware/software configuration of a low-power processing system,
with the aim of adapting to dynamically changing workloads optimizing
power-relevant settings to the corresponding operating point. First, we
present a first validation experiment, involving a hardware-software ar-
chitecture for a connected sensor-processing node that allows the set of
in-place processing tasks to be executed to be remotely controllable by
an external user. The designed system is capable of dynamically adapt-
ing its operating point to the selected computational load, to minimize
power consumption. The benefits of the proposed approach are tested
on a use-case involving ECG monitoring, that, when selected, performs
ECG classification using a lightweight convolutional neural network. Ex-
perimental results show how the proposed approach can provide more
than 50% power consumption reduction for common ECG activity, with
less than 2% memory footprint overhead and reconfiguring the system
in less than 1 ms. Second we present our plans to extend this approach
to more complex multi-core systems.

1 Introduction

Modern systems-of-systems (SoSs) are typically composed of multiple hierarchies
of sensory nodes, that are in charge of collecting huge amounts of sensorial data
from the physical environment. Near-sensor data analytics is often exploited, to
convert acquired raw sensor data in more compact information, with the aim of
reducing bandwidth requirements and communication-related power consump-
tion, increasing responsiveness of the system and avoiding transmission of sen-
sitive data for privacy reasons. A further improvement of this kind of approach
is provided by recent advances in machine learning and cognitive computing
techniques, such as those in the field of deep learning and neural networks, that
provide very high performance in terms of accuracy when it comes to recognition
and classification tasks applied to the sensed data.

To combine near-sensor processing with energy efficiency, data analytics
tasks, that may be quite compute-intensive and power-hungry, must be acti-
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vated only when needed. Nodes must adapt, even at runtime, to different oper-
ating modes corresponding to different usage cases, each one optimized for power
efficiency.

In this paper we present a methodology enabling such kind of runtime dy-
namic management. A detailed description of this experiment is presented in
[16]. Moreover, we present our future plans for extending the methodology to be
used on more complex multi-core systems, using a multi-DSP chip as a target
reference platform.

2 Related work

To validate our approach, we have chosen an application in the IoT health do-
main as a use case. The value of such market is projected to reach $136 billion
by 2021 [14]. Network of sensors are expected to be deployed in hospitals and
homes, many studies in the literature have presented IoT architectures for patient
monitoring [20][15][9]. When implementing IoT-based data sensing architectures,
wearability and portability of the sensing device is crucial, thus autonomy of the
device and battery life are treated as main objectives to be considered within
their design and implementation [5][18][19][1][2]. Several low-power devices avail-
able on the market are able to remain active for days [6], however some further
optimization is still needed when near-sensor data processing has to be exploited
to face power consumption, bandwidth, data privacy and security constraints.

Several research activities have started exploiting current advances in ma-
chine learning and artificial intelligence for detecting specific events/conditions in
sensed data. Some interesting approaches can be found in [17][10]. Both projects
involve the use of artificial neural networks (ANN). However, these works only
use very simple ANN architectures and detect quite generic conditions. For ex-
ample, in [10], by extracting the features of the ECG signal (PQRST peaks),
good results are obtained regarding the classification of emotional states such as
joy and sadness. When it comes to more detailed and reliable analysis, process-
ing tasks may become much more complex and, thus, their execution must be
carefully activated when needed, optimally implemented with adequate tools and
libraries [12][7], on efficient target platform, very often custom-designed [11][13].

As main novel contribution in this work we propose:

– An implementation of a remotely-controlled sensory node allowing for near-
sensor data processing inserted in an IoT context.

– Its validation on a state-of-the-art data analysis based on a Convolutional
Neural Network as an example computational load.

– The evaluation of the effectiveness of in-place computing and operating mode
dynamic optimization, as a method to reduce the power consumption of the
node, on a case study involving classification of ECG data.
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3 Node architecture

The overall system architecture is shown in Figure 1. In this paper, we focus on
the architecture of the sensor node. The description of the cloud infrastructure
and of the gateway is beyond the scope of the work presented here.

The multi-level structure of the sensor node architecture is schematized in
Figure 2. In the following sections, a detailed description of each node level is
provided.

Network of 
remotely-controlled

sensory nodes

IoT 
gateway

Cloud 
infrastructure

Fig. 1. General overview of the proposed
system. Fig. 2. Structural composition of the sin-

gle node.

3.1 Hardware platform

The SensorTile is a platform developed by STMicroelectronic, measuring 13.5×
13.5mm, and equipped with a ARM Cortex-M4 32-bit low-power microcontroller
(80MHz). Despite the small size, the device is endowed with a battery and with
a Bluetooth Low Energy (BLE) module. The system exposes different operating
modes, to be described in the next section.

Two main operating states are available, run mode and sleep mode, which
can be further customized selecting the operating frequency (from 0.1 MHz to 80
MHz) and, depending on the selected frequency range, using a different voltage
regulator.

Within our system, to dynamically reduce power consumption:

– we scale operating frequency and select accordingly the optimal voltage reg-
ulator, on the basis of the actual workload to be served,

– we exploit the sleep mode whenever possible. In sleep mode the microcon-
troller is in standby until it gets awakened by an interrupt. In our implemen-
tation the sleep mode is entered under the control of the operating system
support, whenever all active software tasks are served.
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3.2 Middleware/firmware layer

We have selected a set of middleware and firmware utilities, executable on top of
the hardware platform, providing basic platform management capabilities and
the needed optimized processing functions. Some of these libraries are part of
the SensorTile Hardware Abstraction Layer, provided by the platform vendor.
The others are specifically selected for the purpose of improving flexibility and
implementing cognitiveness on the sensor node.

FreeRTOS In order to enable thread-level abstraction to represent processing
tasks to be executed on the platform, and to timely manage their scheduling
at runtime, the FreeRTOS operating system is included in the stack. It’s small
enough to operate on a microcontroller (generally, size is between 4 kB and
9 kB). FreeRTOS primiteves implement real-time scheduling functionality, com-
munication between processes, synchronization and time measurements.

In our architecture, as mentioned, FreeRTOS is able to schedule an idle task,
that deactivates the system tick counter and sets the microcontroller in sleep
mode. The idle task is entered whenever possible according to the scheduling
queue, when no pending tasks have to be executed.

CMSIS In order to be capable of executing in-place processing of the sensed
data, we have exploited the Cortex Microcontroller Software Interface Standard
(CMSIS), a optimized library specifically targeting Cortex-M processor cores [7].
It integrates several components of CMSIS, including the CMSIS-NN package,
suitable to apply cognitive computing techniques on the sensor data, through ef-
ficient neural network kernels, optimized to maximize performance and minimize
memory footprint.

Within CMSIS, we have added support for 1D convolution operators on input
signals, with the aim of enabling cognitive sequence analysis.

3.3 Application model

We selected an application model based on process networks, where processes act
as data-flow actors communicating through FIFOs. Similar models are widely
used to improve analysis of concurrent tasks on embedded systems and for study-
ing their dynamic reconfiguration [3]. For each sensed variable to be monitored,
we build a chain of tasks that operate on the sensed data. Provided that this
model is used, the architecture and the software stack can execute the tasks
concurrently and manage dynamic switching between operating modes, activat-
ing/deactivating tasks and re-routing data-communication.

Tasks are envisioned to belong to four categories:

– Get data task: takes care to collect data from the sensors.
– Process task: enables in-place computing of the sensed data, e.g. to reduce

bandwidth requirements and energy consumption. Multiple process tasks
may be active to choose the depth of data analysis.



Runtime-Adaptive Cognitive IoT Nodes

– Threshold task: operates on the results of the processing, selecting which
items are relevant to be sent to the cloud.

– Send task: sends data to the cloud.

Activating/deactivating parts of the chain, the system can switch to differ-
ent operating modes, featuring different trade-offs between in-place computing
effort, bandwidth requirements and monitoring precision. Examples of possible
alternative operating modes will be presented within the use-case discussion in
Section 4.

ADAM Along with the chains of tasks processing the different sensor inputs,
the platform executes a periodic task specifically dedicated to dynamic reconfig-
uration, the ADAptive runtime Manager (ADAM). This task periodically pro-
cesses input messages received from the gateway and evaluates the status of the
platform. On this basis, ADAM adapts the software and hardware configuration.

Get data Process Send Get data Process Send

Fig. 3. Two possible configurations of a generic system.

Figure 3 shows an example of the reconfiguration of the system that may
be applied by ADAM. ADAM can be triggered from the gateway, by sending a
message to its input FIFO, or through a periodic timer, to implement a periodic
status check. The system has the possibility to:

– Enable or disable entire sensor task chains.
– Set a run mode or sleep mode of the microcontroller.
– Set the operating frequency of the microcontroller (and consequently the

appropriate voltage regulator).
– Adjust the message traffic between the FIFOs based on which tasks are

active or deactivated.

In the second case, the system has the possibility, for example, to check the
battery status and take reconfiguration decisions accordingly.

4 Use case evaluation

In order to assess the benefits of the proposed approach, we have selected a use
case involving monitoring of a patient’s ECG signal. In the prototype that we
have implemented, an AD8232 sensor module from Analog Devices is connected
to the ADC converter integrated in SensorTile, used to acquire samples to be
coded using 16-bit width. Figure 4 shows components used in the prototype.

In this scenario, three possible operating modes have been identified (see
Figure 5), described individually in the next sections.
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Fig. 4. Prototype hardware components.

Get data Peak CNN Threshold SendOp. mode 1: RAW data.

Get data Peak CNN Threshold SendOp. mode 2: Peak detection.

Get data Peak CNN Threshold SendOp. mode 3: CNN processing.

Fig. 5. EEG application model.

4.1 Operating mode 1: RAW data

This operating mode involves complete transmission of all the collected sam-
ples to the cloud. This requires maximum bandwidth but allows the healthcare
practitioner to visually analyze the whole ECG waveform. Due to the high data
transmission rate, for this operating mode the system must be configured to run
at a minimum frequency of 8MHz. To save energy and to obtain a more stable
connection, multiple samples are been grouped and inserted into a packet of 20
Bytes (8 ECG data 16 bit, 1 timestamp 32 bit). The sample rate of the ADC is
set to 330Hz, so one Bluetooth packet is sent every 24ms.

4.2 Operating mode 2: Peak detection

This operating mode reduces the detail of the information that is sent to the
cloud. Instead of providing visual access to the whole ECG waveform, the practi-
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tioner may monitor only heartbeat rate, prospectively only getting a notification
in case of alert conditions. This operating mode processes samples to search for
signal peaks and consequently computes the heartbeat rate.

The algorithm for detecting a peak signal is based on the its derivative. It
is not vey critical in terms of time and power consumption. The measurement
carried out shows that the system is capable of respecting the real-time con-
straints exposed by the sampling rate at a frequency of 2MHz. The data is sent
to the cloud with a packet of 5 Bytes (1 heartbeat rate value, represented on 8
bit, 1 time-stamp 32 bit). In worst case, a packet is sent for every detected peak
in the signal, thus the bandwidth requirement is dependent on the cardiac ac-
tivity. Considering human tolerable heartbeat rates, the transmission rates are,
however drastically reduced with respect to Operating Mode 1.

4.3 Operating mode 3: CNN processing

This operating mode is designed to combine bandwidth reduction with morpho-
logical analysis of the ECG waveform. This analysis is performed in-place by
a processing task based on a convolutional neural network and communicates
occurrence of specific patterns in the sample sequence. The implemented neural
network can recognize occurrence of anomalous events in the ECG trace, so that
communication to the cloud can take place only when a related alert has to be
notified. Bandwidth requirements are reduced with respect to Operating Mode
1 and may be similar to Operating Mode 2 (worst case is one packet per peak,
when all peaks are anomalous). However, with respect to Operating Mode 2,
computing effort is higher. The node executes the 1D convolution neural net-
work described in [8]. It consists of several convolution layers, down-sampling
layers and one fully connected layer, as represented in Figure 6.

(N) Normal beats
(L) Left bundle branch block
(R) Right bundle branch block
(A) Atrial premature contraction
(V) Ventricular premature contraction

(N) Normal beats
(S) Superventricular ectopic beats
(V) Ventricular premature contraction
(F) Fusion beats
(Q) Unclassificable beat

Fig. 6. CNN structure.

The model can be used in three forms, using different size of the convolution
kernel and the size of the output (number of features) at each layer. In [8] these
three variants are examined:
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– Conv1D small: Output size = 10, kernel size = 3.

– Conv1D medium: Output size = 18, kernel size = 7.

– Conv1D large: Output size = 50, kernel size = 13.

Input size is always set to 300 samples with stride set to 1. We chose Conv1D
medium as reference network, a larger network would exceed memory availability
in the device. The network classifies sliding windows of input samples, centered
in each ECG peak, labeling peak shapes for two possible set of categories, named
NLRAV and NSVFQ (see Figure 6).

The experimental results reported in [8] show that the proposed method
achieves a promising classification accuracy, 97.5%, on the public MIT-BIH ar-
rhythmia database, significantly outperforming several typical ECG classifica-
tion methods. The size of the data transferred to the cloud is 6 Bytes (1 heartbeat
data 8 bit, 1 label data 8 bit, 1 timestamp 32 bit).

5 Experimental results

More details on the experimental results are reported in [16], Figure 7 shows
the different levels of power consumption measurements in the three operating
modes, for some specific heartbeat rate values (50, 100 and 200 bpm).
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Fig. 7. The graph summarizes the energy consumption for different heartbeat rates,
when sending of data is enabled for every beat (Tx) or when it is never enabled (No
Tx) by the threshold task. Operating mode 1 does not depend on heartbeat nor on the
threshold settings.
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6 Future work

In order to validate our approach on state-of-the-art complex parallel processing
platforms and on more complex CNN structures, we will extend the presented
work to perform an experiment on a multi-core platform. This would require
inevitaly several improvements of what was previously described. The reference
platform taken into consideration was developed within the Orlando project by
ST Microelectronics. We will briefly describe the hardware components inside
the system used for the sake of this project in the following. Then, we will discuss
two main required extensions needed to implement runtime adaptivity on this
platform, namely:

– implementation of the adaptivity support on baremetal system, we will need
to exploit the platform-specific set of APIs to manage the process chain and
the related operating modes.

– adaptation of the parallelism level exploitable within the CNN structure,
required to achieve an optimal partitioning of the workload on the available
processing cores, using splitting/merging and pipeline methods.

6.1 Orlando

In order to deploy these technologies in mobile and wearable devices, an efficient
hardware plays a critical role for real-time operation with very limited power
consumption and with embedded memory overcoming the limitations of fully
programmable solutions.

We have selected as reference example a high performance and energy efficient
processor developed by ST microelectronics[4]. The chip is very flexible and
represents a perfect test-case for our technique, since it integrates:

– An on-chip reconfigurable data-transfer fabric to improve data reuse and
reduce on-chip and off-chip memory traffic.

– A power-efficient array of DSPs to support complete real-world computer
vision applications.

– An ARM-based host subsystem with peripherals.
– A range of high-speed IO interfaces for imaging and other types of sensors.
– A chip-to-chip multilink to pair multiple devices together.

6.2 Baremetal system & application model

In general, we should assume (at least part of) the processing elements available
in multi-core architectures to possibly not provide operating system support.
Thus, when extending our work, we will need to manage the tasks in the process
chain the thread-level abstractions granted by the RTOS. Moreover, we will need
to consider tasks in the same chain to be prospectively executed by independent
hardware cores communicating through a set/hierarchy of shared memories. The
ADAM system will not use the APIs offered by the FreeRTOS middleware.
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Instead, low-level primitives provided by STmicroeletronics will allow to manage
the execution and change the operating mode at runtime. Similarly to what
previously shown, when a core is idle, it is placed in a low-power state. The
shared memories between the cores will be used to implement software FIFOs
allowing a correct communication between the different cores.

6.3 CNNs structure

We will implement support for different kinds of parallelism, that will be ex-
ploited to optimize the partitioning of the workload on the available cores. A
first level of parallelism that we will consider will be at layer level. We will take
profit of software pipeline, assigning a core (if available) to each CNN layer. In
case of significant pipeline bottlenecks, taking place when the execution time of
a task is much longer than the others, we will allow the process network to be
modified using split and merge transformations.

If used appropriately, splitting a layer can balance execution times of the
pipeline states, allowing a more efficient utilization of the computing resources.
In the example, the split transformation is performed on a Convolutional Layer
block and divides it into two independent blocks. The input data is copied for
every independent block. The output data stream coming from the two indepen-
dent blocks is combined and synchronized by a concatenation node. The merge
transformation is in the opposite direction. It composes two or more DNN graph
nodes/blocks into one block and and is useful when two or more stages of the
pipeline can be properly merged. We will evaluate combining design-time explo-
ration and runtime management to find the optimal partitioning for the selected
use-cases.

7 Conclusion

In this work we have presented our approach to the design of sensor moni-
toring nodes capable of adapting at runtime to different workloads. We have
presented a first proof of concept, based on a hardware/software architecture
for the design of dynamically reconfigurable IoT, that may adapt to different
operating modes when triggered by an external command or when suggested by
the monitoring of its internal status. The proposed approach has been deployed
on a commercial microcontroller platform and evaluated on a use-case involving
ECG monitoring and classification based on state-of-the art convolutional neu-
ral network. The use-case features three different operating modes, selectable
by means of remotely-sent reconfiguration messages. The results obtained show
how near-sensor processing combined with dynamic optimization can be effec-
tively exploited, reducing power consumption up to a factor of 2 with respect
to static simple monitoring, with limited overhead in terms of memory footprint
and reconfiguration time. We have also introduced our plan for the extension of
the adaptivity support to multi-core parallel computing platforms.
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