CEUR-WS.org/Vol-2459/patternl.pdf

An Ontology Design Pattern for representing
Recurrent Events*

Valentina Anita Carriero'**, Aldo Gangemi'-2,
Andrea Giovanni Nuzzolese!, and Valentina Presutti!

1 STLab, ISTC-CNR, Rome, Ttaly
2 FICLIT, University of Bologna, Bologna, Italy

Abstract. In this paper we describe an Ontology Design Pattern for
modeling events that recur regularly over time and share some invariant
factors, which unify them conceptually. The proposed pattern appears
to be foundational, since it models the top-level domain-independent
concept of recurrence, as applied to a series of events: we refer to this type
of events as recurrent event series. The pattern relies on existing patterns,
i.e. Collection, Situation, Classification, Sequence. Indeed, a recurrent
event is represented as both a collection of events and a situation in
which these events are contextualized and unified according to one or
more properties that are peculiar to each event, and occur at regular
intervals. We show how this pattern has been used in the context of
ArCo, the Knowledge Graph of Italian cultural heritage, in order to
model recurrent cultural events, festivals, ceremonies.

Keywords: ontology design patterns, recurrent events, collection, cul-
tural heritage

1 Introduction

In 1917 Amedeo Modigliani, a famous Italian painter and sculptor, creates an
oil painting depicting Hanka Zborowska?3, wife of his friend Léopold Zborowski.
The creation of a specific painting — which is considered as a cultural property
— involves the author and that cultural property, has a start date and an end
date, and it occurs under particular conditions. Thus, we can assert that the
creation of the Portrait of Hanka Zborowska is an event occurring only once. On
the contrary, the Art Biennale* (Biennale d’arte di Venezia) is a contemporary
visual art exhibition whose occurrences are held biennially (in odd-numbered
years) since 1895, and have in common: the Biennale Foundation (Biennale di

* Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
** Corresponding author: valentina.carriero@istc.cnr.it
3 https://w3id.org/arco/resource/HistoricOrArtisticProperty/1200491016
4 https://www.labiennale.org/en/art/

https://w3id.org/arco/resource/HistoricOrArtisticProperty/1200491016
https://www.labiennale.org/en/art/

2 Valentina Anita Carriero et al.

Venezia) as event organizer, Venice as event place, the promotion of new contem-
porary art trends as mission, a time period of 2 years between two consecutive
occurrences.

Given these two scenarios, it clearly appears that the second one has some
peculiar properties that are not shared with the first one.

Usually, when we informally talk about the repetition of an event, we use the
term recurrent event, as we are referring to an event (e.g. the Art Biennale) that
occurs more than once. Actually, we are unknowingly using the term recurrent
event to denote a series of conceptually unified events (e.g. the Art Biennale is a
series of consecutive events that can be somehow considered as part of a uniform
collection).

Facing the need to model such situations — which we refer to as recurrent
event series — that involve a series of events and have some invariant and dis-
tinctive attributes in common, we realized that the concept of recurrent event
is not well-represented, and cannot be captured by state-of-the-art patterns and
ontologies.

In this paper we present the Recurrent Event Series Ontology Design Pat-
tern (ODP), which models a recurrent event as a collection of events, in which
the member events are in sequence and separated by a (approximately) reg-
ular time interval, and the whole collection has at least one invariant factor
(e.g. the topic, the place, organizations involved, etc.), which is common to all
the member events and makes the recurrent event distinctive. We assert that
the proposed pattern appears to be foundational, since it models the top-level
domain-independent concept of recurrence, as applied to a series of events.

The remainder of the paper is as follows: Section 2 introduces the related
work, Section 3 describes the pattern and presents its formalisation by using de-
scription logics, Section 4 provides a usage example. Finally, Section 5 concludes
the paper with possible future works.

2 Related work

In literature, some authors [3, 9, 8] investigate different kinds of constraints
that bound a recurrent event, such as constraints related to instances of the
series and constraints related to the series as a whole. Moreover, they distinguish
between more or less strongly periodic events, with regard to the regularity of
time intervals between the events. We follow the approach adopted by [8], where
repeated events are seen as collections of events of the same type, and the notion
of recurrent event is related to the idea of a coherent series of events that become
part of a pattern by means of their iteration, at regular but not necessarily equal
time intervals.

While in [1] the authors deal with the concept of collection, they only focus
on collections of endurants, i.e. entities that are directly localized in space such
as objects and substances, while the attributes peculiar to a collection of events,
entities directly localized in time (perdurants), are not studied.

http://ontologydesignpatterns.org/wiki/Submissions:RecurrentEventSeries
http://ontologydesignpatterns.org/wiki/Submissions:RecurrentEventSeries

An Ontology Design Pattern for representing Recurrent Events 3

There exist few examples of ontologies referring to recurrent events, but in
most cases they are modeled as a particular type of event, rather than as a
collection of events. For instance, in DBPedia®, recurrent event series such as
annual music festivals are represented as events®, and DBPedia ontology” mod-
els concepts such as dbo:01lympics, dbo:Tournament and dbo:MusicFestival
as subclasses of dbo:Event. In CIDOC-CRMS®, periodic cultural events can be
modeled only through the generic class crm:E5_Event.

We can consider an extension to the DBpedia modelling as an alternative
to the one proposed here, but only if we add a mereological pattern that treats
specific events as sub-events of a recurrent one. This solution may use normal
interval algebra for time series of sub-events. However, a mereological approach is
less clear in distinguishing typical features of recurrency. For example, a recurrent
event may have no members at all, and still be a recurrent event, but in this
case, a mereological whole would be empty (itd have no parts), which is both
formally and intuitively impossible.

There are also other problems, e.g. the intermittent presence of the event
would make it a part of a maximal continuous event organisation event, which
is not the same as a collection of specifically identified events, maybe more com-
monsensically. In other words, if we admit that recurrency is a temporal mere-
ology concept, we need also to admit maximal mereological wholes for any set
of events that have some temporally ordered similarity, which in the considered
use cases would be an overcommitment.

An approach that is closer to ours is taken by the extended module of Pro-
ton Ontology”, where a pext:RecurringEvent is defined as a “recurring se-
quence of events” and is related to single events through the object property
pext:hasRecurringEventInstance. The relation between the recurrent event
and its frequency is expressed by the datatype property pext: currentFrequency.
However, in this ontology a recurring event is not represented as a particular
type of collection, but generally as a subclass of proton:Happening!®, which
is defined as “something that happens”, and the events that are instances of a
pext:RecurringEvent are not represented as consecutive. Finally, the Ontology
Design Pattern PeriodicInterval'’ provides a means to represent the period of
periodic intervals, such as “every Monday”, by specializing time:Interval'?.
Nevertheless, it is still not possible to model either factors unifying this partic-
ular type of collection or the sequence of unified events.

® https://wiki.dbpedia.org/
5 For example, the Umbria Jazz Festival is an instance of the class http://dbpedia.
org/class/yago/Event100029378
" dbo: http://dbpedia.org/ontology/
8 crm: http://www.cidoc-crm.org/cidoc—crm/
9 pext: http://www.ontotext.com/proton/protonext#
10 proton: https://www.ontotext.com/proton/protontop#
" http://ontologydesignpatterns.org/wiki/Submissions:PeriodicInterval
12 time: https://www.w3.org/2006/time#

https://wiki.dbpedia.org/
http://dbpedia.org/resource/Umbria_Jazz_Festival
http://dbpedia.org/class/yago/Event100029378
http://dbpedia.org/class/yago/Event100029378
http://dbpedia.org/ontology/
http://www.cidoc-crm.org/cidoc-crm/
http://www.ontotext.com/proton/protonext##
https://www.ontotext.com/proton/protontop##
http://ontologydesignpatterns.org/wiki/Submissions:PeriodicInterval
https://www.w3.org/2006/time#

4 Valentina Anita Carriero et al.

3 Recurrent Event Series ODP

The presented pattern reuses as template 4 Ontology Design Patterns (ODPs):
Collection'3, Situation'*, Classification'®, Sequence'. These patterns are ex-
tracted from DOLCE+DnS Ultra-lite!” foundational ontology, a lighter and
name-friendly of DOLCE+DnS [5], thus our ODP is also aligned to it. Moreover,
all reused ODPs are annotated with OPLa ontology [6], which facilitates future
reuse of this pattern.

Table 1: Competency questions answered by the Recurrent Event Series ODP.

ID Competency question

CQ1 What are the events of a recurrent event series?

CQ2 Which is the time period elapsing between two events of a re-
current event series?

CQ3 When is the next event of a recurrent event series scheduled?

CQ4 What are the unifying criteria shared by all the events in a
recurrent event series?

CQ5 Which is the (immediate) next event in a recurrent event series?
CQ6 Which is the (immediate) previous event in a recurrent event
series?

The base namespace ishttp://www.ontologydesignpatterns.org/cp/owl/
recurrenteventseries.owl# and the pattern, as submitted to the ODP portal,
can be found at http://ontologydesignpatterns.org/wiki/Submissions:
RecurrentEventSeries.

A diagram for the pattern is given in Figure 1, and the Competency Questions
(CQs) our pattern can answer are included in Table 1.

The aim of this paper is twofold: (i) introducing a general pattern and (ii)
its usage example. The general pattern provides an abstract reusable template
for modelling recurrent event series that does not specify any semantics for the
concepts of event and time period, which are not native to this pattern. The
usage example implements the pattern by reusing the semantics associated with:
d0:Eventuality, from the foundational ontology DOLCE-Zero'®, as a top-level
concept for any event, situation or activity, and the conceptualisation of time
periods as defined by the Time Period Content ODP'?, which is an additional
original contribution of this paper. Classes and properties of the pattern are
explained below.

3 http://ontologydesignpatterns.org/wiki/Submissions:Collection

M http://ontologydesignpatterns.org/wiki/Submissions:Situation

!5 http://ontologydesignpatterns.org/wiki/Submissions:Classification
6 http://ontologydesignpatterns.org/wiki/Submissions:Sequence

17 qul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#

18 30: http://www.ontologydesignpatterns.org/ont/d0.owl#

!9 http://ontologydesignpatterns.org/wiki/Submissions:TimePeriod

http://ontologydesignpatterns.org/wiki/Submissions:Collection
http://ontologydesignpatterns.org/wiki/Submissions:Situation
http://ontologydesignpatterns.org/wiki/Submissions:Classification
http://ontologydesignpatterns.org/wiki/Submissions:Sequence
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
http://www.ontologydesignpatterns.org/ont/d0.owl##
http://ontologydesignpatterns.org/wiki/Submissions:TimePeriod

An Ontology Design Pattern for representing Recurrent Events 5

dul:Concept

- dO:Eventuality|

dul:Collection and dul:Situation rdfs:subClassOf
A

rdfs:subClassOf

xsd:boolean

:isTheLastEvent
:eventNumber

:hasNextEvent

rdfs:subClassOf :hasPreviousEvent

:UnifyingFactor

thasMemberEvent

V
:hasUnifyingFactor :hasTimePeriod
BeforeNextEvent

\—MEventSeries
v
7:hasTimePeriod4@

[=] Prefixes

: http://www.ontologydesignpatterns.org/cp/owl/recurrenteventseries.owl#
dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#

dO: http://www.ontologydesignpatterns.org/ont/d0.owl#

rdfs: http://www.w3.0rg/2000/01/rdf-schema#

xsd: http://www.w3.0rg/2001/XMLSchema#

Fig. 1: Pattern for Recurrent Event Series, in Graffoo notation [4]. A recurrent
event series is related to: its member events, which are in sequence; one ore more
unifying factors; the time period between two consecutive events.

RecurrentEventSeries. Recurrent events are represented as individuals of the
class :RecurrentEventSeries, which is modeled as an intersection of the classes
dul:Collection and dul:Situation. Indeed, a recurrent event is seen as a
collection, since it contains entities that share one or more common properties
and are conceptually unified. These entities are member of the collection, and are
consecutive events, so that each event may have either a previous event, or a next
event, or both, unless the recurrent event, planned to be a series of at least two
events, is interrupted after the first event, or is never instantiated. At the same
time, a recurrent event is a situation, intended as a relational context in which
the contextualized things are based on a frame: a recurrent event is similar to a
plan that defines how the things involved in that plan (i.e. the specific events)
shall be carried out, e.g. where the events shall be located, in which time of the
year, etc.

RecurrentEventSeries C dul:Collectionl1dul:Situation
RecurrentEventSeries = JhasMemberEvent.
(> OhasNextEvent .Event L

> OhasPreviousEvent. Event)

http://www.essepuntato.it/static/graffoo/specification/current.html

6 Valentina Anita Carriero et al.

hasMemberEvent. A recurrent event is a particular type of collection where
all the members are events: entities flowing in time, related to space and time
and involving some objects. The relation between a collection of recurring events
(a :RecurrentEventSeries) and the events that are members of the collection
is represented by the object property :hasMemberEvent. Its inverse property is
:isEventMemberOf. The concept of event is not native to our pattern, thus we
create a generic class :Event that is declared as a subclass of d0:Eventuality.

RecurrentEventSeries C JhasMemberEvent.Event
Event C d0:Eventuality

UnifyingFactor. A recurrent event is a collection whose members are unified
by a unity criterion [1], i.e. organized according to one (or more if it evolves
through time) recognizable pattern shared by all members. Thus, it is perceived
as a unitary collection of events when it has at least one element or property that
occurs in each event member, making all the events attributable to a homoge-
neous collection. For instance, all the events member of a recurrent event series
can be located in the same place, be on the same topic, plan certain activities,
involve the same audience, etc. These unifying factors may have some degree of
flexibility, in order to envision properties that usually occur in all the events, but
can undergo change under particular conditions. The :RecurrentEventSeries
is related to these invariant :UnifyingFactors by means of the object prop-
erty :hasUnifyingFactor. A :UnifyingFactor is modelled as a subclass of
dul:Concept, since it is a social object created for collecting existing entities,
i.e. events.

RecurrentEventSeries C JhasUnifyingFactor.UnifyingFactor

UnifyingFactor C dul: Concept

hasNextEvent, hasPreviousEvent. The events which are members of a re-
current event series are in sequence: it is possible to represent which is the previ-
ous and/or the next event of a particular member event by means of the object
properties :hasPreviousEvent and :hasNextEvent, which are defined as inverse
properties. These properties are further specialised into :hasImmediatePrevious
Event and :hasImmediateNextEvent, respectively, in order to associate events
to their immediate next and previous events.

In the context of this pattern, by defining these properties we want to express a
relation between events that are members of the same collection, that is the same
recurrent event series, rather than relate an event to any other previous or next
event. However, this intended restriction can not be formally expressed efficiently
and in a straightforward manner with OWL 2 DL primitives [7]. Instead, it is pos-
sible to check the local integrity of an instantiation of a :RecurrentEventSeries
by using inference rules.

An Ontology Design Pattern for representing Recurrent Events 7

For example, let us consider the following SPARQL query. An event — mem-
ber of a recurrent event series — can be related by the property :hasNextEvent
to another event — also member of a recurrent event series — only if both events
are member of the same recurrent event series. Therefore, a triple asserting a
local inconsistency between the two recurrent event series will be generated, if
an owl:sameAs relation between the two recurrent event series does not exist.
Similar SPARQL queries can be executed for the related constraints (e.g. events
connected by :hasPreviousEvent object property). These queries can be em-
bedded in the RDF model via SPIN? or SHACL?!.

PREFIX recurrentevent: <http://www.ontologydesignpatterns.org/cp/
owl/recurrenteventseries.owl#>

CONSTRUCT {7rel recurrentevent:isLocallyInconsistentWith 7re2}
WHERE {

?rel recurrentevent:hasMemberEvent 7eventl

?re2 recurrentevent:hasMemberEvent 7event2 .

7eventl recurrentevent:hasNextEvent 7event2 .

filter not exists {?rel owl:sameAs 7re2}

filter (7rel !'= 7re2)

filter (7eventl != 7event2)

}

The datatype property :isTheLastEvent, whose range is xsd:boolean, al-
lows us to express whether an event is the last event of the series or not, while
through the datatype property :eventNumber it is possible to represent the
number of the event within the series (e.g. “1” for the first event).
TimePeriod. A collection of events can be defined recurrent if there is a regu-
larity in the intervals between consecutive events: it has to be specified a tem-
poral distance, even approximated, that elapses between one member event and
the next and the previous ones. While considering necessary to explicitly ex-
press this time period, we leave the user of this ODP free to model this concept
in different ways. Hence, we create a generic class :TimePeriod. Nevertheless,
we propose a possible solution for implementing the pattern, by reusing the
class tp:TimePeriod from the TimePeriod ODP?? in our usage example (see
Section 4). A tp:TimePeriod is related to a measurement unit and a mea-
surement value. The collection of events is related to the recurrent time period
with the object property :hasTimePeriod, which is defined as a property chain
[:hasMemberEvent o :hasTimePeriodBeforeNextEvent]. The object property
:hasTimePeriodBeforeNextEvent relates an event, member of a recurrent event
series, to the time period that has typically to elapse before the next event is
held, which is usually approximate (e.g. yearly, monthly, etc.), and is different
from the actual time between two events, which can be derived from the time
intervals computed between any two members.

20 https://spinrdf.org/
2! https://www.w3.org/TR/shacl/
22 tp: http://www.ontologydesignpatterns.org/cp/owl/timeperiod.owl#

https://spinrdf.org/
https://www.w3.org/TR/shacl/
http://www.ontologydesignpatterns.org/cp/owl/timeperiod.owl##

8 Valentina Anita Carriero et al.

RecurrentEventSeries C JhasTimePeriod.TimePeriod

hasTimePeriod C hasMemberEvent o hasTimePeriodBeforeNextEvent

TimePeriodMeasurementUnit. The tp:TimePeriod is associated to the unit
for measuring the time interval, tp:TimePeriodMeasurementUnit (e.g. year,
month, week), by means of the object property tp:hasTimePeriodMeasurement
Unit. Instead, the relation with the time value is expressed by the datatype
property tp:timePeriodValue, whose range is xsd:integer.

TimePeriod C JhasTimePeriodMeasurementUnit.TimePeriodMeasurementUnit

JtimePeriodValue.zsd:integer

Table 2: SPARQL queries that can be run over the Recurrent Event Series ODP.
See Table 1 for the corresponding CQs.
CQ ID SPARQL query

CcQ1 SELECT ?event WHERE {?recurrentEvent :hasMemberEvent
Tevent}

CQ2 SELECT ?timePeriod WHERE {?recurrentEvent :hasTimePe-
riod 7timePeriod}

CQ3 SELECT ?timePeriod WHERE {?event :hasTimePeriodBe-
foreNextEvent ?timePeriod}

CQ4 SELECT ?unifyingFactor WHERE {?recurrentEvent :hasUnify-
ingFactor ?unifyingFactor}

CQ5 SELECT 7?nextEvent where {?event ?p 7nextEvent . 7p
rdfs:subPropertyOf* :hasNextEvent}

CQ6 SELECT ?previousEvent where {?event ?p ?previousEvent . 7p

rdfs:subPropertyOf* :hasPreviousEvent }

The CQs included in Table 1 can be translated into the SPARQL queries in
Table 2.

4 Usage example

We have been working on formally representing recurrent events in the context
of a project named ArCo?? (Architecture of Knowledge) [2]. During this project,
we developed the Italian cultural heritage (CH) knowledge graph, consisting

23 https://w3id.org/arco

https://w3id.org/arco

An Ontology Design Pattern for representing Recurrent Events 9

of a network of ontologies and facts on Italian cultural properties, based on
the official General Catalogue of the Italian Ministry of Cultural Heritage and
Activities (MiBAC). In particular, we felt the need to represent events regularly
recurring over time in two cases.

ex:Year

. o :hasUnifying
ex:july Factor

"1"AAxsd:integer

ex:Jazz

. - o\ o tp:hasTimePeriod
ex:Umbria :hasUnifying I\ﬁea::régeen:[llr?it tp:timePeriodValue
Factor
:hasUnifying

ex:Umbriajazz

Factor :hasTimePeriod O«
ex:1Year
:hasTimePeriod
:hasMemberEvent :hasMemberEvent BeforeNextEvent
ex:UmbriaJazz1973 ‘hasMemberEvent ex:Umbrialazz1975

:hasimmediate :hasimmediate
PreviousEvent NextEvent

I di ' di
NextEvent I PreviousEvent

ex:UmbriajJazz1974

:hasNextEvent

Prefixes

* http: / fwww. org /cp/owl/recur owhF
tp: htp:/ /www.ontol .org/cp/owl/ P .owl#
ex: http:/fexample.org/

Fig.2: Usage example in Graffoo notation. Umbria Jazz is a recurrent event
series, and is related to: its first three consecutive events; three unifying factors;
the time period between two consecutive events.

In the MiBAC catalogue records, which describe Italian cultural properties,
it is possible to find information about events involving cultural properties, such
as exhibitions. Cataloguers gather and record the event title, place, time, orga-
nizer(s). There is no explicit information about possible recurrent cultural events.
Nonetheless, by analyzing the data, we noticed that there are many cases of event
titles like “third exhibition”, “tenth painting award”, “first triennial exhibition”,
etc., which clearly refer to the same collection of events. For instance, in ArCo
data, some cultural properties are involved in different editions®* of a four-year
exhibition organized by the Quadriennale di Roma Foundation, in Rome, out of
a total of 16 exhibitions, from 1931 to 2017.

21 E.g. this is the fourth edition, involving 3 cultural properties in the dataset: https:
//w3id.org/arco/resource/CulturalEvent/d13747fe737deledab4a5250b59d91£f5

http://www.essepuntato.it/static/graffoo/specification/current.html
https://w3id.org/arco/resource/CulturalEvent/d13747fe737de1eda54a5250b59d91f5
https://w3id.org/arco/resource/CulturalEvent/d13747fe737de1eda54a5250b59d91f5

10 Valentina Anita Carriero et al.

The second use case is about a particular type of intangible cultural heritage:
ceremonies, customs and celebrations related to the year cycle (e.g. Carnival, Ra-
madan) or to the season cycle (circumstances connected to e.g. popular belief,
myth, science, phenomena of specific periods of the year). These kind of intan-
gible cultural properties recur regularly, indeed the MiBAC catalogue records
contain a specific tag for information about their periodicity (e.g. annual, every
two years, three times a year).

Figure 2 shows a simple usage scenario. This example refers to Umbria Jazz,
an international jazz festival held in Umbria, Italy. Umbria Jazz has all the
attributes to be identified as a recurrent event. Indeed, it is a group of events,
which can be seen as a unitarian collection on account of at least three unifying
factors: it takes place in July, in the Italian region of Umbria, and has the musical
genre jazz (and some other related genres) as a topic. Moreover, the events,
which are members of this collection and have some invariant in common, recur
at regular time periods: the festival is held annually, hence there is a time period
of about one year between a member event and the next one (the festival does
not take place on a specific date of July).

The following RDF triples, serialized as TURTLE, formally represent the
example in Figure 2. The prefix ex: stands for a namespace used for illustrative
examples (http://example.org/).

ex:UmbriaJazz a :RecurrentEventSeries;
:hasUnifyingFactor ex:Umbria, ex:Jazz, ex:July ;
:hasTimePeriod ex:1Year .

ex:Umbria a :UnifyingFactor .
ex:Jazz a :UnifyingFactor .
ex:July a :UnifyingFactor .

ex:1Year a tp:TimePeriod ;
tp:hasTimePeriodMeasurementUnit ex:Year ;
tp:timePeriodValue "1"~"xsd:integer .

:Year a tp:TimePeriodMeasurementUnit

ex:UmbriaJazz :hasMemberEvent ex:UmbriaJazz1973 ,
ex:UmbriaJazz1974 , ex:UmbriaJazz1975 .

ex:UmbriaJazz1973 a :Event
ex:UmbriaJazz1974 a :Event
ex:UmbriaJazz1975 a :Event

ex:UmbriaJazz1973 :hasImmediateNextEvent ex:UmbriaJazz1974
:hasNextEvent ex:UmbriaJazz1975 .

s

ex:UmbriaJazz1974 :hasImmediateNextEvent ex:UmbriaJazz1975
:hasImmediatePreviousEvent ex:UmbriaJazz1973 .

s

REFERENCES 11

:UmbriaJazz1975 :hasImmediatePreviousEvent ex:UmbriaJazz1974 ;
:hasPreviousEvent ex:UmbriaJazz1973 .

ex:UmbriaJazz1973 :hasTimePeriodBeforeNextEvent ex:1Year .
ex:UmbriaJazz1974 :hasTimePeriodBeforeNextEvent ex:1Year .
ex:UmbriaJazz1975 :hasTimePeriodBeforeNextEvent ex:1Year .

5 Conclusion and future work

In this paper, we proposed an Ontology Design Pattern (ODP) to represent
events that recur regularly over time, in a temporal sequence, and are members
of a unitary collection since they share some invariant properties. We created
this pattern in response to the need of modeling cultural events, exhibitions,
traditional ceremonies, festivals, etc. However, this pattern seems to be useful for
representing many recurring events, which differ depending on the origin of the
regular intermittence: (i) not man-made events repeating with some regularity
that has a natural origin (e.g. the sunrise every morning or periodic migrations
of animals); (ii) events where the recurrence and unifying factors are set by
humans (e.g. a world day or a train schedule); (iii) events created by humans
with a periodicity regulated by a clear purpose, as part of a workflow (e.g.
a medical prescription defining time intervals to take a medicine or periodical
supply of services).

In our future work, we aim at studying all types of recurrent events, iden-
tifying possible new features, investigating solutions for representing more or
less flexible unifying factors, and at experimenting and evaluating other possible
patterns for recurrent events.

References

[1] Emanuele Bottazzi et al. “From collective intentionality to intentional col-
lectives: An ontological perspective”. In: Cognitive Systems Research 7.2-3
(2006), pp. 192—208.

[2] Valentina Anita Carriero et al. “ArCo: the Italian Cultural Heritage Knowl-
edge Graph”. In: Proceedings of ISWC 2019 - accepted for publication.
(Auckland, New Zealand). 2019.

[3] Shubha Chakravarty and Yuval Shahar. “Specification and detection of pe-
riodic patterns in clinical data”. In: Fourth Workshop on Intelligent Data
Analysis in Medicine and Pharmacology (IDAMAP-99). Citeseer. 1999, pp. 20—
31.

[4] Riccardo Falco et al. “Modelling OWL ontologies with Graffoo”. In: Euro-
pean Semantic Web Conference. Springer. 2014, pp. 320-325.

[6] Aldo Gangemi et al. “Sweetening ontologies with DOLCE”. In: Interna-
tional Conference on Knowledge Engineering and Knowledge Management.
Springer. 2002, pp. 166-181.

12

REFERENCES

Pascal Hitzler et al. “Towards a Simple but Useful Ontology Design Pat-
tern Representation Language”. In: Proceedings of WOP 2017. (Vienna,
Austria). 2017.

Rinke Hoekstra and Joost Breuker. “Polishing diamonds in OWL 2”. In:
International Conference on Knowledge Engineering and Knowledge Man-
agement. Springer. 2008, pp. 64-73.

Paolo Terenziani. “Toward a Unifying Ontology Dealing with Both User-
Defined Periodicity and Temporal Constraints About Repeated Events”.
In: Computational Intelligence 18.3 (2002), pp. 336—385.

Alexander Tuzhilin and James Clifford. “On Periodicity in Temporal Databases”.
In: Information Systems 20.8 (1995), pp. 619-639.

	An Ontology Design Pattern for representing Recurrent Events

