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Abstract. We introduce an adaptive model fitting approach for the
segmentation of human vessels from 3D images. The shape and size of the
region-of-interest (ROI) used for model fitting are automatically adapted
to the local width, curvature, and orientation of the vessel to increase
the robustness and accuracy of model fitting. In conjunction with our
previously proposed cylindrical model, the new adaptive approach has
been successfully applied to segment vessels from 3D MRA and CTA
images. Our experiments show that the adaptive approach yields superior
segmentation results compared to approaches based on a fixed size ROI.

1 Introduction

Segmentation and quantification of vessels from 3D medical images is crucial
for diagnosis, treatment, and surgical planning. In clinical practice, images of
the human vascular system are acquired using different imaging modalities, for
example, 3D magnetic resonance angiography (MRA) or computed tomography
angiography (CTA). However, the segmentation of vessels from 3D medical im-
ages is difficult and challenging for several reasons: The width of vessels depends
on the type of vessel, the width typically varies along vessels, the images are
noisy, and the boundaries between the vessels and surrounding tissues are lo-
cally difficult to recognize, in particular, when considering curved 3D structures.

Previous work on the segmentation of vessels from 3D image data can be
divided into two main classes of approaches, one based on differential measures
(e.g., [1]) and the other based on deformable models (e.g., [2]). The main disad-
vantage of differential measures is that only local image information is taken into
account. On the other hand, approaches based on deformable models generally
exploit contour information of the anatomical structures. While these approaches
include more global information in comparison to differential approaches, only
2D or 3D contours are taken into account. Alternatively, deformable models us-
ing intensity models have been suggested (e.g., [3, 4]). In comparison to previous
contour-based models more image information is taken into account to improve
the robustness and accuracy of the segmentation result. With these approaches
a fitting scheme is employed where the model is directly fitted to the image in-
tensities within region-of-interests (ROIs). However, these approaches use ROIs
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with a fized size along the whole vessel. This can lead to inaccurate estimates
of the vessel’s width for two reasons. First, the width of vessels generally varies
along the vessel and therefore a fixed size ROl is not optimal for the whole vessel.
If the ROI is too large it might contain neighboring structures which negatively
influence the accuracy. On the other hand, if the ROI is too small the estimated
results are not reliable. Second, the curvature of vessels also often varies along a
vessel. As these approaches are based on straight models (e.g., straight cylinder
segments) they can only approximate curved structures (by using a ROT in axial
direction along the cylinder). Again, using a fixed size ROT is not optimal for the
whole vessel, i.e. if the ROI is too large the model cannot well approximate the
curved vessel, and if the ROI is too small the model is more sensitive to noise.
We have developed a new adaptive model fitting approach where the size
and shape of the ROI are automatically adapted to the local width, curvature,
and orientation of the vessel. We propose two independent schemes. First, the
ROT size in axial direction (along the vessel) is adapted to the local curvature
of the vessel, i.e. an increasing curvature along the vessel results in a shortening
of the ROI and vice versa. As a result, the ROI in axial direction is reduced
to allow a good approximation of a curved vessel but can also be extended to
include more image information to decrease the influence of noise in case of low
curvature parts. Second, the ROI size in orthogonal direction is adapted to the
local width of the vessel, i.e. an increasing width along the vessel results in an
increasing width of the ROI and vice versa. As a result, the vessel is always well
inside the ROI but neighboring structures are excluded as much as possible.

2 Adaptive Size and Shape of the ROI

To segment vessels from 3D image data we utilize an incremental process that
starts from a given point of the vessel and proceeds along a certain direction. In
each increment, the parameters of a vessel segment (radius R, contrast a, image
blur o, 3D position xq, and 3D orientation a) are determined by fitting a 3D
parametric intensity model to the image intensities within a 3D ROI. Here, we
use the cylindrical model gar cyiinder Proposed in [4] that is an approximation
of a Gaussian smoothed cylinder and is well-suited for vessels of small, medium,
and large sizes. Initial parameters for the fitting process are determined from
the estimated parameters of the previous segment using a Kalman filter.

We adapt the size and shape of the 3D ROI based on the initial parameters of
the current vessel segment. For each segment, a local coordinate system is defined
where the origin and orientation are given by the 3D position and orientation
of the vessel segment (see Fig. 1, left). In this coordinate system, the z-axis is
pointing along the vessel (axial) and the x- and y-axes are pointing orthogonal
to the vessel. Adaptive model fitting is realized using a spherical ROI and, in
addition, applying a weighting function to the voxels inside the ROI. As weight-
ing function we use a Gaussian where the argument is given by the z-coordinate
of a voxel in the local coordinate system, i.e. w(z,y, z) = exp(—zZ/ (2030)). The
weighting function emphasizes voxels closer to the xy-plane at the origin and
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Fig. 1. 2D sketch of a curved vessel with decreasing width along the vessel and the
adapted ROI for three segments (left). In addition, a 2D section of the 3D weighting
function w(a:7 Y, z) for a ROI radius of Rror = 10 voxels and a standard deviation of
0w = 4 voxels is shown (center). The sketch on the right shows the centerline of a
curved vessel (bold arc) as well as two estimated positions x; and x» along with their
orientations vi and vs. The distance d and the change of direction 6 as well as the
radius R, defining the curvature & of the arc are marked.
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reduces the influence of voxels further away, resulting in an effective shortening
of the ROT in axial direction (see Fig. 1, center). Thus, the ROI has an ellipsoidal
(discus-like) shape. The shortening itself is controlled by the standard deviation
oy of the Gaussian function, which is adapted to the local vessel curvature &
using

Ow = Co,, +Cu/K (1)

with constants ¢,, and c¢,, where oy, is restricted to a certain interval. This
adaptation results in an optimal axial length of the ROI w.r.t. vessels of varying
curvature. Here, the curvature & is estimated based on the fitting results of
the previous two vessel segments at positions x; and xy (see Fig. 1, right).
The change of direction § between the estimated (normalized) orientations vy
and vy is given by § = arccos ({vy,v2)) where {-,-) denotes the inner product.
Using the Euclidean distance d between x; and x3, & computes to x = R;! =
2d~1 sin(d/2). The second adaptation mechanism is achieved by controlling the
size of the spherical ROI itself. The radius Rgros of the sphere is adapted to the
local vessel radius R and image blur ¢ by

Rror =|¢crRR+cs 0+ ¢+ 0.5] (2)

using constants cg, ¢, and ¢, and the floor function |-]. This results in an optimal
orthogonal ROI size, and thus we can cope with vessels of varying width.

3 Experimental Results

We have applied our new adaptive model fitting approach using a large spectrum
of different 3D synthetic images as well as 3D MRA and CTA images.

First, we determined values for the constants in (2) that yield optimal adapta-
tions of the ROI size. We created 168 different synthetic images of straight cylin-
ders by varying the radius (R = 1,...,7 voxels), the image blur (¢ = 0.5,1,...,3
voxels), and the noise level. For each cylinder, we used 6 different ROI radii,
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Fig. 2. The differences of the estimated radius (mean, minimum, and maximum for
110 to 224 segments) and the true radius R = 3 voxels of the cylindrical cross section
of a torus are shown for different torus radii R, using a fixed size ROI (left) and an

adaptive ROI (right). The dashed lines highlight the error interval of £0.1 voxels.
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thus we conducted about 1000 experiments. Here, we did not apply the weight-
ing function. From the segmentation results (not shown here) it turned out that
cg =1, ¢, = 2, and ¢ = 2 give accurate estimates in nearly all experiments.

Second, we determined values for the constants in (1) that result in optimal
adaptations of the ROI shape. We created 315 different synthetic images of
tori by varying the torus radius (R, = 5,...,25 voxels, i.e. kK = 0.2,...,0.04),
the radius of the cylindrical cross-section (R = 1,...,5 voxels), and the noise
level. For each torus, we used 16 different standard deviations of the weighting
function (o = 0.5, 1,..., 8 voxels), thus we conducted about 5000 experiments.
The segmentation results suggest that ¢,, = —8/3 and ¢, = 2/3 in combination
with 2 < g, < 6 yield accurate fitting results. For example, Fig. 2 summarizes
the segmentation results of 21 tori for different torus radii R.. Shown are the
errors of the estimated radius R using a fixed size (left) as well as an adaptive
ROT (right) for vessel segmentation. It can be seen that the adaptive ROI yields
quite accurate results and significantly improves the accuracy of the estimated
radius for larger curvatures (particularly see the left part of both diagrams).

Third, we carried out experiments based on 205 synthetic images containing
different tubular structures of varying width and curvature (i.e. 3D spirals and
cylinders with a variable radius along the cylinder). We found that the new
approach is quite robust against noise and produces significantly more accurate
results in comparison to the previous approach. For example, Fig. 3 shows the
segmentation result of a screw-like 3D spiral with a radius of R = 2 voxels (left).
In addition, the estimated radius along the spiral is shown for a fixed size (grey)
as well as an adaptive ROIT (black). Tt turns out that using an adaptive ROI
vields accurate results, i.e. the maximal error of the estimated radius is below
0.11 voxels for the first four windings and below 0.26 voxels for the last part
(where the curvature is very large). In contrast, the previous approach yields a
maximal error of up to 0.39 voxels for the first four windings, and is not able to
fully segment the last part (errors up to 0.7 voxels for the segmented part).

Finally, from the experiments based on real 3D images it turns out that the
adaptive approach successfully segments and quantifies arteries of different sizes
and high curvatures. For example, Fig. 4 shows the segmentation results of the
aorta (MRA, left) and of arteries of the thorax (CTA, right).



107

Fig. 3. Segmentation result of a screw-like 3D spiral with radius R = 2 (left). The right
diagram shows the estimated radius for about 480 voxels along the spiral for a fixed
size ROI (grey) and an adaptive ROI (black). The vertical lines separate the windings.

Fig. 4. Segmentation results of applying the new approach to the aorta (MRA, left)
and to thorax arteries (CTA, right). For visualization we used 3D Slicer (SPL, Boston).

4 Discussion

We introduced a new adaptive model fitting approach for fitting a cylindri-
cal intensity model to tubular structures. Experiments using synthetic and real
3D images show that the approach is quite robust against noise and produces
significantly more accurate results for tubular structures of varying width and
curvature in comparison to the previous approach using a fixed size ROI. The
approach is well-suited for vessels of small, medium, and large widths as well as
for vessels with varying width and curvature along the vessel.
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