Fließende Überblendung von Endoskopiebildern für die Erstellung eines Mosaiks

Diana Wald¹ ², Mireille Reeff¹, Gábor Székely¹, Philippe Cattin¹ und Dietrich Paulus²

¹ Medical Image Analysis and Visualization Group
Computer Vision Laboratory, Swiss Federal Institute of Technology
ETH-Zentrum Sternwartstr. 7, CH-8092 Zurich
² Institut für Computervisualistik, Universitätsstr. 1, D-56070 Koblenz

1 Einleitung

Das Twin to Twin Transfusion Syndrome (TTTS) ist eine Erkrankung der Plazenta, die bei monozytoten Schwangerschaften auftreten kann (Twin to Twin Transfusion Syndrome Foundation, www.tttsfoundation.org).

Die Sterberate für monozytoten Mehrlinge, die ab der Mitte der Schwangerschaft an TTTS leiden, liegt zwischen 80% und 100%. Rechtzeitig erkannte lassen sich durch einen minimal invasiven Eingriff diese Anastomosen jedoch trennen, wobei mit dem Endoskop die Plazenta abgesucht wird und mit einem Laser die verbundenen Blutgefäße getrennt und koaguliert werden. Durch systematisches Abfahren der Plazenta könnte aus Einzelbildern ein Gesamtbild der Plazenta in Form eines Mosaikes erstellt werden. Dieses Gesamtbild wäre eine ideale Orientierungshilfe für den Chirurgen und würde die Operation beschleunigen und sicherer gestalten.

\section{Methoden}

\textbf{Illuminanzausgleich.} Aufgrund der koaxialen punktförmigen Lichtquelle des Endoskopes sind die Bilder in der Mitte über- und zum Rand hin meist unterbelichtet [5].

\begin{equation}
g(x, y) = \gamma(x, y)I(x, y)\hat{g}(x, y) + o(x, y)
\end{equation}

Beim Illuminanzausgleich durch LF wird angenommen, dass das Störsignal γ und der Belichtungsfaktor I tieffrequent sind und der Offset o null sei. Wird das
Bild g mit einem Tiefpassfilter (LP) geglättet, ist das Resultat eine Abschätzung des Hintergrundes bzw. die tieffrequenten Störfaktoren γ und I. Wird nun diese geglättete Version von dem Bild g subtrahiert und eine Konstante, die die Helligkeit im Bild korrigiert, addiert, so ist das Ergebnis das abgeschätzte illuminanzausgeglichene Bild \hat{g}.

$$\hat{g}(x, y) = g(x, y) - \text{LP}\{g(x, y)\} + C \quad (2)$$

Im Verfahren der kalibrierten Filterung (KF) nach [6] wird das verwendete Endoskop mit Hilfe zweier Referenzbildern f_{black} und f_{white} kalibriert, wobei f_{black} den Dunkelstrom liefert. Damit vereinfacht sich (1) mit $I = 0$ zu $f_{\text{black}}(x,y) = o(x,y)$. Da im weißen Referenzbild f_{white} keine Bildinformationen vorhanden sind, liefert das es die Faktoren γ, I und o:

$$f_{\text{white}}(x, y) = \gamma(x,y)I(x,y) + o(x,y) \quad (3)$$

Für den Illuminanzausgleich mit dem KalibrierungsfILTER ergibt sich nach [6]:

$$\hat{g}(x, y) = C (g(x, y) - f_{\text{black}}(x, y))/(f_{\text{white}}(x, y) - f_{\text{black}}(x, y)) \quad (4)$$

Die nun vorgeschlagene Methode trägt diesem Umstand Rechnung, indem die Pixel je nach ihrer Position im jeweiligen Bild, resp. ihrer Entfernung zum Rand, unterschiedlich gewichtet werden. Das bedeutet, die Pixel, die sich in der Mitte eines Bildes befinden erhalten eine höhere Priorität als die zumeist unscharfen Randpixel (Abb. 2). Um die Position der Pixel in den jeweiligen Bildern festzulegen, betrachtet eine Maske der Größe $h \times h$ eine bestimmte Anzahl von Nachbartpixeln. Wenn der betrachtete Nachbarpixel innerhalb des jeweiligen Bildes liegt, wird eine Variable i um eins erhöht. Das bedeutet, dass Randpixel mit einem kleinen Wert erhalten, da ein großer Teil der Nachbarpixel außerhalb des Bildes liegen. Dagegen erhalten Pixel, die sich in der Mitte des Bildes befinden, den maximalen Wert, da bei jedem Nachbarpixel i um eins erhöht wird. Diese Vorgehensweise wird für das existierende Mosaik und das Bild, das neu dazu kommt, an der Stelle (x, y) des zu verarbeitenden Pixel angewendet. Durch die Variable i ist die Entfernung des betrachteten Pixel zum Rand in beiden Bildern
bekannt und der neue Pixelwert $\tilde{k}(x, y)$ kann wie folgt berechnet werden:

$$
\tilde{k}(x, y) = \frac{i_k - \lfloor \frac{k}{2} \rfloor}{(i_k - \lfloor \frac{k}{2} \rfloor) + (i_i - \lfloor \frac{i_i}{2} \rfloor)} k(x, y) + \frac{i_i - \lfloor \frac{i_i}{2} \rfloor}{(i_k - \lfloor \frac{k}{2} \rfloor) + (i_i - \lfloor \frac{i_i}{2} \rfloor)} l(x, y)
$$

wobei h für die verwendete Maskengröße, k für das vorhandene Mosaik und l für das neu dazu kommenden Bild steht. Durch die Subtraktion der Hälfte der Maskenfläche $\lfloor \frac{k}{2} \rfloor$ von i wird bewirkt, dass Randpixel eine geringere bzw. keine Gewichtung erhalten. Erst nachdem der komplette Überlappungsbereich abgearbeitet wurde, werden die neuen Farbwerte \tilde{k} auf das Mosaik geschrieben. Die Variable i wird für die beiden Bilder k und l separat ermittelt als i_k und i_l.

3 Experimente

Das vorgeschlagene Überblendungsverfahren zeigt eine visuell deutliche Verbesserung der Bildqualität im zusammengesetzten Bild. Der Übergang von einem zum anderen Bild verläuft durch die prozentuale Gewichtung linear. Dabei werden die informationsarmen Ränder marginal oder gar nicht bewertet und somit
werden keine wichtigen Details im Bild verdeckt. Um ein optimales Resultat zu erzielen, wird für die Berechnung eine Maske $h \times h$ in der Größenordnung des Überlappungsbereichs benötigt.

4 Zusammenfassung und Ausblick

Danksagung. Die Arbeit wurde im Rahmen des Freemover Programs an der ETH in Zürich durchgeführt. Die Bilder der Plazenta wurden in Kooperation mit Prof. Dr. med. Zimmermann von der Frauenklinik des Universitätsklinikums in Zürich erstellt und uns dankenswerter Weise zur Verfügung gestellt.

Literaturverzeichnis