Entfaltung von Ultraschallsignalen für verbesserte Bildqualität in der Ultraschall Computertomographie


Forschungszentrum Karlsruhe,
Institut für Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe
Email: rainer.stotzka@ipe.fzk.de


1 Ultraschall Computertomographie

Ultraschall Computertomographie (USCT) ist ein bildgebendes Ultraschall-Verfahren, mit dem die Aufnahme von Volumenbildern mit wesentlich verbesserter räumlicher Auflösung und höherem Gewebekontrast möglich wird [1, 2].


1.1 Signalverarbeitung

In unserem Versuchsaufbau verwenden wir Ultraschallwandler mit einer Resonanzfrequenz von ca. 3 MHz und einer Bandbreite von ca. 50 %. Die Signalverarbeitung eines A-Scans $x(t, e, r)$ besteht aus den folgenden Schritten:

- Analog Tiefpassfilterung mit einer Grenzfrequenz bei 5 MHz,
- Digitalisierung mit 10 MHz Abtastrate und 12 Bit Quantisierung,
- Berechnung der Einhüllenden $A(t, e, r) = |x(t, e, r) - iH(x(t, e, r))|$.

$x(t, e, r)$ beschreibt den Schalldruckverlauf (proportional gemessen durch eine Spannung) über die Zeit $t$ für die Sendeposition $e$ und die Empfangsposition $r$. $H(.)$ bezeichnet die Hilberttransformierte. Abbildung 1 zeigt oben einen A-Scan und unten links die korrespondierende Einhüllende.

1.2 Bildrekonstruktion

Wird angenommen, dass die Schallgeschwindigkeit $c$ im gesamten abzbildenden Volumen konstant ist, kann ein Bild aufgrund der vollständigen synthetischen Apertur (full aperture sum-and-delay Algorithmus) [3] rekonstruiert werden. Dabei werden zur Bestimmung der Reflexionsamplitude $R(x)$ eines Pixels an der Position $x$ die Einhüllenden aller möglichen Kombinationen von Sendepositionen $e$ und Empfangspositionen $r$ akkumuliert:

$$R(x) = \sum_{e, r} A\left(\frac{|e - x| + |x - r|}{e}, e, r\right)$$  \hspace{1cm} (1)

Die Qualität der rekonstruierten Bilder hängt wesentlich von der zeitlichen Auflösung der reflektierten und gestreuten Signale ab. Die Breite der Einhüllenden nach einer Pulsanregung bestimmt die Ortsauflösung des Systems. Der in Abbildung 1 verwendete Ultraschallpuls besitzt eine Länge von ca. 3 Wellenlängen. Bei einer angenommenen Schallgeschwindigkeit von 1500 m/s in Wasser ergibt
sich eine Pulsbreite von ca. 1.5 mm und damit auch die maximale Auflösung des Systems.

Zur Verbesserung der Auflösung kann die Pulsbreite aufgrund der begrenzten Bandbreite der Ultraschallwandler nicht direkt verringert werden. Deswegen ersetzen wir zur Eliminierung des Einflusses der Pulsbreite die Berechnung der Einhüllenden durch eine inverse Filterung (Entfaltung), um die A-Scans zu schärfen und bessere Auflösungen zu erreichen.

2 Verbesserung der Signalverarbeitung durch Entfaltung

Die Erzeugung eines A-Scans $x(t)$ wird als lineares System [4, 5] modelliert: Die Anregung der Ultraschallwandler und die Übertragungsfunktionen der Ultraschallwandler und der Elektronik bilden den Ultraschallpuls $w(t)$. Die Gewebeantwort $s(t)$, die räumliche Streubre- bzw. Reflektivitätsfunktion der Brust, wird mit dem Ultraschallpuls gefaltet:

$$x(t) = w(t) \ast s(t),$$

$\ast$ bezeichnet den Faltungsoperator. Im diskreten Fall gehen wir davon aus, dass die Signale $w(t)$ und $s(t)$ mit gleicher Abtastrate zu $w = [w(0), w(1), \ldots, w(A-1)]^T$ und $s = [s(0), s(1), \ldots, s(B-1)]^T$ digitalisiert wurden. Die Signale werden als periodisch mit den Perioden $A$ und $B$ angesehen. Um ein Überlappen der Perioden bei der Faltung zu vermeiden, werden die Funktionen durch Auffüllen mit Nullen zu $M \geq A + B - 1$ verlängert.

Im Entfaltungs-Modell wird angenommen, dass die Gewebeantwort eine Serie von Impulsen ist, die durch ihre zeitliche Verschiebung und Amplitude den reflektierenden Schichtgrenzen und Streuern im Gewebe entspricht. Ein Filter $f$, der den Ultraschallpuls $w$ invertiert, kann die Gewebeantwort $s = x \ast f$ rekonstruieren. Deswegen wählen wir den Ansatz:

$$w \ast f = d_k,$$

$$W f = d_k,$$

bzw. in Matrixschreibweise:

$$W = \begin{bmatrix}
  w(0) & w(M-1) & \cdots & w(M-N+1) \\
  w(1) & w(0) & \cdots & w(M-N+2) \\
  w(2) & w(1) & \cdots & w(M-N+3) \\
  \vdots & \vdots & \ddots & \vdots \\
  w(M-1) & w(M-2) & \cdots & w(M-N)
\end{bmatrix},$$

wobei die Zielfunktion $d_k$ als eine dem Diracschen Deltapuls ähnliche Funktion der Länge $M$ gewählt wird, bei dem ein zeitlicher Versatz $k$ (Phase) vorgegeben werden kann:

$$d_0 = [1, 0, 0, \ldots, 0]^T \quad \text{minimale Phase}$$
$$d_k = [0, 0, \ldots, 0, 1, 0, \ldots, 0]^T \quad \text{"gemischte" Phase}$$
$$d_{\text{max}} = [0, 0, 0, \ldots, 1]^T \quad \text{maximale Phase}$$

Aufgrund der Nadelimpuls-artigen Zielfunktion $d_h$ wird diese Art der Entfaltung auch "spiking deconvolution" genannt.

Das Problem der Entfaltung reduziert sich auf die Invertierung einer nicht-quadratischen zirkulären Matrix $W$. Das inverse Filter $f$ ist ein Wienerfilter mit

$$ f = (W^T W - \lambda I)^{-1} W^T d_h. $$

$\lambda$ ist ein Dämpfungs- bzw. Regularisierungsparameter, der zur Diagonalen der Autokorrelationsmatrix $W^T W$ addiert wird, um numerische Instabilitäten durch bandbegrenzte $W$ zu vermeiden. $I$ bezeichnet die Einheitsmatrix.

"Spiking deconvolution" kann angewendet werden, wenn der zu invertierende Ultraschallpuls $w$ bekannt ist. Wir bestimmen $w$ durch eine Lernmessung, bei der der Ultraschall Computertomograph nur mit Wasser gefüllt ist. Der auf geradem Weg von einem Sendewandler zu einem Empfangswandler durchgehende Signalanteil kann als Faltung des Ultraschallpulses mit einem zeitverschobenen Dirac-Puls interpretiert werden. Der Signalanteil wird manuell segmentiert und als $w$ verwendet.

Die Qualität des inversen Filters wird im wesentlichen von der Filterlänge $N$ und der Phase $k$ bestimmt. Diese Parameter optimieren wir durch Minimierung des quadratischen Fehlers $\varepsilon = |d_h - W f|^2$.

### 3 Ergebnisse

Verschiedene inverse Filter basierend auf "spiking deconvolution" wurden getestet. Modifiziert wurden die Filterlänge $N$ und die Phase $k$, bis ein "bestes" Filter
gefunden wurde. Angewendet auf die A-Scans konnten die direkt durchgehen-
den, gestreuten und reflektierten Signalanteile deutlich geschärft werden. Abb. 1
(unten rechts) zeigt die berechnete Gewebeantwort mit dem besten gefundenen
inversen Filter.
Mit den aufbereiteten A-Scans wurden zweidimensionale Bilder eines Test-
objekts rekonstruiert. In Abb. 2 werden die rekonstruierten Bilder unter der Ver-
wendung der Einhüllenden und der entfalteten Gewebeantwort verglichen. Die
Auflösung der Bilder steigt erheblich. In den Bildern sind Nylonfäden der Dicke
0.1 mm mit einem Anstand von 0.5 mm deutlich unterscheidbar. Diese Struktu-
ren entsprechen ca. einem Fünftel der verwendeten Ultraschallwellenlänge.

4 Diskussion

Wir haben gezeigt, dass mit Hilfe von Entfaltung der Ultraschallsignale die Qua-
lität der Bilder eines Ultraschall Computertomographen deutlich verbessert wer-
den kann. Diese Art der Vorverarbeitung ist nicht nur zur Schärfung der A-Scans,
sondern eignet sich auch für eine "intelligente" Kompression.
Der zu invertierende Ultraschallpuls \( \omega \) wird aufgrund einer Leermessung nur
unge nau bestimmt. Dabei wird vernachlässigt, dass unterschiedliche Wandler
unterschiedliche Wandlercharakteristiken besitzen, die zudem auch noch rich-
tungsabhängig sind. Zudem erschweren Rauschen und Dispersion eine genaue
Messung. Eine alternative Methode zur Entfaltung ist "blind deconvolution",
bei der statistische Eigenschaften des Ultraschallpulses aus den A-Scans direkt
gewonnen werden können. In der Fortsetzung unserer Arbeit werden wir inverse
Filter mittels "blind deconvolution" konstruieren und für die Ultraschall Com-
putertomographie optimieren.

Weiterhin möchten wir in Zukunft die Wandler gezielt durch beliebige Pul-
formen anregen ("coded excitation"). Dadurch können auf den Frequenzgang
wandler optimierte Übertragungsfunktionen erzwungen werden, um die Be-
stimmung des inversen Filters zu erleichtern und schärfere Bilder zu liefern.

Literaturverzeichnis

   new 3D ultrasound computer tomography demonstration system. Biomedizinische
2. Stotzka R, Müller TO, Scholte-Holubek K, Göbel G. Ultraschallwandler–Array–
   Systeme für die 3D Ultraschall–Computertomographie. In: Bildverarbeitung für die
5. Ayer et al. U, Petropulu A, Reid J. Higher order spectra based deconvolution of
   1075.