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Abstract

The degree of automation in our daily life will grow rapidly. This leads
to big challenges regarding the safety validation of autonomous robots
which take over more and more tasks being – as of yet – predesti-
nated for humans. This is in particular true for the emerging area of
autonomous driving which aims at making road traffic safer, more effi-
cient, more economic, and more comfortable. One promising approach
for the safety validation of autonomous driving is the virtual simula-
tion of traffic scenarios, i.e. conducting the majority of tests in virtual
reality instead of the real world. In addition to quantity, the quality of
such tests with a focus on critical traffic scenarios will be an essential
ingredient for safety validation.

In this paper, we investigate the concretization of traffic scenarios – in
particular, scenarios which are specified as a set of constraints with
interval parameters. We rely on the iSAT algorithm to perform the
core reasoning, adapt its decision heuristics and complement it with
an ICP-aware formula generation for non-linear formulas. The result-
ing Scenario Concretization Solver (SCS) – although being written in
Java – is able to outperform SMT solvers on this problem class.

Keywords: Autonomous Driving, Traffic Scenarios, Constraint Sys-
tems, Constraint Solving

1 Introduction

Virtual safety validation is bound to play an increasingly important role in the development of complex systems.
This is especially true in the context of autonomous driving – where achieving a convincing degree of coverage
purely by testing an autonomous vehicle in the real world may not only be impractical (cf. e.g. [12] for an
estimate of required mileages), especially given that each change to the system may trigger a full re-test, but
furthermore be outright dangerous to the general public.

The need for virtual validation has thus been widely recognized in both industry and academia [13, 8] and has
consequently even found its way into the recently published standard for “road vehicles – safety of the intended
functionality” [1].
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An essential element in the virtual validation of autonomous vehicles is subjecting the so-called “ego vehicle”
(i.e. the vehicle to be tested) to various traffic scenarios that describe real-world situations. Such traffic scenarios
can be written manually by experts (e.g. requirement engineers, traffic experts, even by function developers who
are keen on getting quick feedback), can be derived from past experience of critical situations (e.g. accident data
bases), or by observing real-world traffic. In either case, a scenario may have to be designed or to be analyzed
by human operators, who need to have a quick grasp of the contents of the scenario. At the same time, scenarios
need to have a clear semantics to allow unambiguous communication, simulation, and testing.

This important topic of scenario formalization is still the subject of ongoing efforts to develop and standard-
ize scenario formats in academia, e.g. traffic sequence charts [5], as well as industry – especially the ASAM
OpenScenario standardization in which a wide range of OEMs, suppliers, and tool vendors are involved1. While
a standard like OpenSceneario may in the future very well become a household name within the context of
any virtual validation effort, for the purposes of this paper we confine ourselves to a core of essential elements
that we believe define a sensible description of vehicle behavior and inter-vehicular relationships based on the
observations we previously made in [7]. The precise description of this formalism on which we base our work can
be found in Section 2.

In our view, scenarios need to accommodate different levels of abstraction to allow for an efficient use of
modeling effort. By specifying a scenario on an abstract level and using partially or fully automated variation
strategies, one abstract scenario can lead to a huge number of concrete test cases. One essential element by
which this degree of abstractness can be controlled is the use of intervals for the description of e.g. velocities,
distances, and speed differences. Using relatively large intervals within a scenario leads to a wide range of
possible executions and may thus lower the effort needed to write more specific concrete instances of the scenario
manually.

Within this paper, we present a solver for the (discrete-time) concretization of abstract scenarios. There
are in fact multiple purposes of such a concretization. Firstly, scenario concretization allows the modeler of a
scenario to check the plausibility and validity of the scenario by seeing one or even multiple concrete instances
of it. Unintended behavior can thus be detected as well as inconsistencies be analyzed and fixed. Secondly, a
concretization may help to actually execute the scenario during simulation. While a concretization in the form
of trajectories for all involved vehicles cannot be used directly as a test case (since the ego vehicle as system
under test must of course be allowed to behave freely during the test), the concretization may be used to find
a dynamic or rather reactive test strategy that adapts the surrounding vehicles to the ego vehicle’s behavior.
Thirdly, scenario concretizations can be influenced by adding side constraints that describe different regions of
the solution space. Scenario concretization may thus be used as a form of guided scenario variation – a part of
the possible automation that reduces the manual effort needed to specify scenarios.

2 Traffic Scenarios

As motivated above, scenario formalisms that could be accepted industry-wide are still to be developed. For
our purposes, however, we assume an essential core of scenario elements for which we design our solver. In this
section, we introduce this scenario formalism which mostly follows and refines our previous presentation [7].

2.1 Syntax of Traffic Scenarios

A traffic scenario is defined by the following elements. Let IR denote the set of closed intervals over the real
numbers R including the (half-)open intervals containing −∞ and +∞. We further denote by ID a unique
identifier. For the sake of simplicity, we restrict the scenarios to the two dimensional plane and a straight road
(both limitations could be lifted at a later stage). We call x the longitudinal direction parallel to the direction
of the road and y the lateral direction orthogonal to the road.

Vehicle Type: A vehicle type consists of ranges for speed [vmin, vmax] ∈ IR and acceleration [amin, amax] ∈ IR.

Vehicle: A vehicle is defined by an ID and its vehicle type.

Lane: A lane is defined by an ID, a width w ∈ R, and a left and right neighboring lane, which may or may not
exist.

1https://www.asam.net/standards/detail/openscenario/
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Lane Constraint: A lane constraint, denoted by lane(h, s, t, r), is defined by a vehicle h, a source lane s, a
target lane t, and a change rate r ∈ IR.

Distance Constraint: A distance constraint is defined by two vehicles h1 and h2, an initial distance i ∈ IR,
an invariant distance d ∈ IR, a final distance f ∈ IR, and a distance change rate r ∈ IR. It is denoted by
distance(h1, h2, i, d, f, r). All distances are given only with respect to the x dimension, such that e.g. two
cars driving alongside on different lanes, would have a distance of 0. It should be noted that the invariant
distance d is only partially handled by the current SCS version (cf. Section 3.3).

Speed Constraint: A speed constraint, denoted by speed(h, i, s, f, r), is defined by a vehicle h, an initial speed
i ∈ IR, an invariant speed s ∈ IR, a final speed f ∈ IR, and a speed change rate r ∈ IR. This speed is given
only with respect to the x dimension, i.e. the lateral component during lane changes is ignored.

Speed Difference Constraint: A speed difference constraint is defined by two vehicles h1 and h2, an initial
speed difference i ∈ IR, an invariant speed difference s ∈ IR, a final speed difference f ∈ IR, and a speed
difference change rate r ∈ IR. It is denoted by speed diff(h1, h2, i, s, f, r). Also in this case, only the velocities
in the x dimension are considered.

Traffic Phase: A traffic phase P = (d, L,H, e, C) is given by an admissible duration d ∈ IR, a set L of lanes, a
set H of vehicles with one prominently labeled as “ego vehicle” e ∈ H, and a set C of lane, distance, speed,
and speed difference constraints defining the initial, invariant, and final states admissible within that phase.

Traffic Scenario: A traffic scenario S = (P1, . . . ,Pn) is given by a sequence of traffic phases P1, . . ., Pn with
the same ego vehicle e in each phase, i.e. e = ei for each ego vehicle ei of Pi.

2.2 Semantics of Traffic Scenarios

The semantics of a traffic scenario S is given by runs. Intuitively, a run comprises the behavior of all vehicles
of the traffic scenario that match all the constraints of the traffic phases. The model of the physical behavior of
a vehicle for a step of (arbitrary) duration ∆t ∈ R is given by the following equations, with x, y, vx, vy, ax, ay
being the x and y position as well as the speed and acceleration in x and y directions, respectively. The primed
version w′ of a variable w denotes the value of w after the step.

v′x = vx + ∆t · ax (1)

v′y = vy + ∆t · ay (2)

x′ = x + ∆t · 1/2 · (v′x + vx) (3)

y′ = y + ∆t · 1/2 · (v′y + vy) (4)

For a vehicle h let s(h) be some valuation for all state components x, y, vx, vy, ax, ay of v. For a vehicle h and
a lane, distance, speed, or speed difference constraint c, we define init(s(h), c), inv(s(h), c), and final(s(h), c) to
be true if and only if the initial, invariant, and final constraints of c, respectively, are satisfied by valuation s(h).

Run of a Traffic Scenario: Let S = (P1, . . . ,Pn) be a traffic scenario with Pi = (di, Li, Hi, ei, Ci) being a
traffic phase. A run

r = ((t11, s
1
1), . . . , (t1m1

, s1m1
), . . . , (tn1 , s

n
1 ), . . . , (tnmn

, snmn
))

of S satisfies the following conditions with tij ∈ R being increasing time points and sij(h) for all h ∈ Hi being
a valuation for all state components of h.

• All vehicles follow the model of the physical behavior described by equations 1, 2, 3, and 4, i.e. for
r = (. . . , (t, s), (t′, s′), . . .), we have ∆t = t′ − t and s′ and s are connected by equations 1, 2, 3, and 4.

• The admissible duration of each phase is met:
∀1 ≤ i ≤ n : timi

− ti1 ∈ di.

• The initial constraints of the first phase P1 are satisfied:
∀h ∈ H1 ∀c ∈ C1 : init(s11(h), c).

• The initial constraints of each phase Pi>1 are satisfied:
∀1 < i ≤ n ∀h ∈ Hi ∀c ∈ Ci : init(si−1mi−1

(h), c).



• The invariant constraints of each phase are satisfied:
∀1 ≤ i ≤ n ∀1 ≤ j ≤ mi ∀h ∈ Hi ∀c ∈ Ci : inv(sij(h), c).

• The final constraints of each phase satisfied:
∀1 ≤ i ≤ n ∀h ∈ Hi ∀c ∈ Ci : final(simi

(h), c).

2.3 Example

In our formalism, a simple overtaking scenario with two vehicles h1 and h2 could be modeled in three phases as
follows. While h2 stays on the right lane in all phases, h1 changes from the right to the left lane in the first phase,
stays on the left lane in the second phase and changes back to the right lane in the third phase. Additionally,
the distance between both vehicles changes. While being behind h2 in the first phase, h1 overtakes h2 in the
second phase and stays in front of h2 in the third phase. In all phases h1 has at least the same speed as h2, i.e.
the speed difference between both vehicles is less than or equal to zero. Or more formally:

• Let T be a vehicle type with v ∈ [−5.5, 69] and a ∈ [−10, 5.5].

• Let h1 and h2 be two vehicles of type T and let H = {h1, h2}.

• Let left and right be two neighboring lanes and let L = {left, right}.

• Let c1, c2, . . . , c12 be constraints and let ∼ denote the interval (−∞,+∞):

c1 = distance(h1, h2,∼, [4, 10], [2, 5],∼)
c2 = speed diff(h1, h2,∼, (−∞, 0],∼,∼)
c3 = lane(h1, right, left, [0,+∞))
c4 = lane(h2, right, right, [0, 0])
c5 = distance(h1, h2, [2, 5],∼, [−5,−2],∼)
c6 = speed diff(h1, h2,∼, (−∞, 0],∼,∼)
c7 = lane(h1, left, left, [0, 0))
c8 = lane(h2, right, right, [0, 0])
c9 = distance(h1, h2, [−5,−2], (−∞,−2],∼,∼)
c10 = speed diff(h1, h2,∼, (−∞, 0],∼,∼)
c11 = lane(h1, left, right, (−∞, 0])
c12 = lane(h2, right, right, [0, 0])

• Let C1 = {c1, . . . , c4}, C2 = {c5, . . . , c8} and C3 = {c9, . . . , c12}.

• Let Pi([1, 5], L,H, h1, Ci) with i ∈ {1, 2, 3} be three traffic phases.

• Then SA = (P1,P2,P3) is a simple overtaking scenario.

In Section 4 this scenario is parameterized by the number of vehicles and phases. Similar to h2, every additional
vehicle stays on the right lane in all phases. Furthermore, distance constraints are added to ensure that hi+1

drives in front of hi for i ≥ 2. Another variant of SA (denoted SB) is obtained by introducing additional speed
difference constraints. If the number of phases is increased, extra overtaking maneuvers are performed until there
is no further vehicle to overtake – in this case h1 stays in front of the last vehicle hn for the remaining phases.

3 Scenario Concretization Solver (SCS)

As explained in the previous section, our scenario formalism uses intervals to constrain the behavior of the
vehicles. For example, a vehicle h might be required to have a speed between 20 m/s and 25 m/s at the beginning
of a phase – i.e. c1 = speed(h, i, s, f, r) with i ∈ [20, 25]. Thus, it is only consequent to check whether the intervals
within a constraint are consistent. For example, if c1 additionally constrains the invariant speed s to [27, 30],
then this contradicts with the initial speed i – as the interval of i does not intersect with the interval of s. On
the other hand, in case i and s have an intersection (e.g. with i ∈ [20, 25] and s ∈ [23, 30]), then it is possible to
confine i to [23, 25].

Unfortunately, such a simple interval intersection check only covers some of the dependencies within a con-
straint. Furthermore, such a check is unable to handle dependencies between different constraints. For example,



let vehicle h1 have an invariant speed interval of [20, 25] while vehicle h2 has an invariant speed interval of [27, 30].
Additionally, let h1 and h2 be at different lanes but at the same longitudinal position at the beginning of a phase
P. Obviously, the distance between h1 and h2 is zero at the beginning of P but will increase over time – as h2

is strictly faster than h1. Hence, there could be a conflict with a distance constraint depending on the allowed
duration of P. Similar to the equations for the physical behavior of a vehicle (cf. Section 2.2), the dependencies
between the speeds of h1 and h2, their distance and the phase duration can be expressed symbolically in a
formula (cf. Section 3.3). As the involved variables have interval valuations, Interval Constraint Propagation
(ICP) [3] is a natural choice to check whether such a set of equations is inconsistent regarding the given intervals.

Our approach builds on ICP – but embeds it into the Conflict-Driven Clause Learning (CDCL) [18] framework
to obtain a search process which allows backtracking to be performed in a non-chronological manner. This
combination of ICP and CDCL is also known as the iSAT algorithm [10, 11]. Hence, this paper describes
another application for it. Originally, the iSAT algorithm was developed for hybrid systems verification. For
such systems one could expect some kind of robustness [9, 15], i.e. small perturbations do not change the
behavior of the system – otherwise the system would have problems with noisy input signals anyway. A similar
kind of robustness is characteristic to the traffic scenarios considered in this paper. This means, we accept that
the given constraints might be violated by a small margin. For example, if a constraint requires a vehicle to
have a speed of exactly 25 m/s, then 25.001 m/s or 24.999 m/s are also considered as valid solutions. In fact,
this violation margin is orders of magnitude smaller and was below 10−12 in our experiments. Additionally, we
apply reasonable bounds to accelerations, speeds, durations, positions and distances, i.e. every −∞ or +∞ in
an interval will be replaced with a number which is considered to be a valid lower or upper bound regarding a
physically reasonable behavior.

In order to keep the paper self-contained we start with a short and informal introduction to ICP, before giving
an overview of the iSAT algorithm. The final two subsections contain the main contributions of this paper: the
ICP-aware conversion from a given constraint set to a formula as well as the heuristics which selects a variable
for the next interval split to be performed.

3.1 ICP in a Nutshell

When considering an equation like x = y + z, the variables x, y and z are usually understood as placeholders
which stand for single values. This is generalized when performing ICP [3] – i.e. instead of single values, each
variable is considered to represent a set of values bounded by an interval. The interval calculation is performed
regarding the worst-case by asking the question: what is the smallest and largest value when considering all
value-pairs within the intervals of y and z while calculating the sum of each value-pair. This result (denoted by
x′) can be calculated by adding the lower and upper bounds (denoted by lb and ub) of y and z. The new interval
of x is obtained by intersecting the intervals of x and x′. In case of the subtraction operation x = y − z, the
smallest value is obtained by subtracting the largest possible value of z from the smallest possible value of y. In
a similar fashion the largest possible value is calculated:

x′lb = ylb + zlb x′lb = ylb − zub
x′ub = yub + zub x′ub = yub − zlb

The multiplication operation x = y·z requires a case distinction regarding the sign of its factors, e.g. yub·zub might
yield x′lb or x′ub depending on whether the intervals of y and z contain positive or negative values. Furthermore,
as the calculations are performed with floating-point numbers, outward rounding is applied.

If an equation contains more than one arithmetic operation, it is possible to build a dedicated interval prop-
agator for it. Alternatively and similar to the Tseitin-transformation [19], each equation with n arithmetic
operations can be decomposed into a conjunction of n − 1 equations containing one arithmetic operation by
introducing additional auxilary variables [11] – such a decomposition is also used in our approach. Thus, interval
addition, subtraction and multiplication are sufficient for the formulas considered in this paper. Additionally,
for each equation x = y � z with � ∈ {−,+, ·} its two redirected forms are examined as well – e.g. in case of
x = y + z, the redirected forms y = x − z and z = x − y are also considered by ICP. Thus, besides −, + and
· a limited form of interval division is used as well (denoted by /) in order to confine the intervals of y and z
regarding the equation x = y · z.

As described, each equation and its redirected forms are handled individually by ICP. An equation x = y � z
with � ∈ {−,+, ·, /} is consistent regarding the interval valuation of its three variables, if the intervals of x and
y� z have a non-empty intersection. If an equation is consistent, then it is guaranteed to have a solution within



the intervals of the variables contained in the equation. But there is no such guarantee if ICP is applied to a
conjunction of multiple equations, i.e. the consistency of all equations does not imply the existence of a solution.
For example, in the case of x = y + z with x ∈ [0, 0] and y, z ∈ [−10, 10] there is a dependency between y and z.
On the one hand, for each y ∈ [−10, 10] there is a z ∈ [−10, 10] such that y+z ∈ [0, 0]. Thus, ICP cannot confine
the intervals of y and z. On the other hand, not every pair of values in the interval of y and z is a solution for
x = y + z when x ∈ [0, 0]. Hence, as the intervals of y and z stay unchanged, the dependency between both
variables induced by the interval of x is not visible for ICP when examining w = y − z with w ∈ [0, 0]. The
conjunction of both equations implies y = z = 0, but ICP is unable to detect this2. In a similar setting a set of
further equations might imply other values for y and z, but as ICP keeps y, z ∈ [−10, 10] this inconsistency will
stay undetected. Thus, when multiple equations are involved, the intervals determined by ICP overapproximate
the set of solutions. In other words, if ICP detects an inconsistency there is indeed no solution – in case all
equations are consistent, the current interval valuation of all variables might or might not contain a solution.
Therefore, a further mechanism is needed to obtain a method which is able to find a solution or prove the absence
thereof.

The basic idea to get such a method is to reduce the width of the intervals. If, in the extreme case, all variables
have point intervals (i.e. an interval width of zero and thus single values), then the consistency of all equations
proves that the current valuation is a valid solution. Hence, intuitively, if all equations are consistent and the
interval widths of all variables are very small, one could call this an almost-solution. This directly relates to the
robustness mentioned earlier. If small perturbations are allowed (i.e. by adding a small individual perturbation
constant to each equation), then this almost-solution can be used to obtain a valid solution for such a perturbed
conjunction of equations – e.g. by (a) taking the midpoint of each interval, and (b) calculating the needed
perturbation constant for each equation. Hence, the question remains how to reduce the width of the intervals.

This can be achieved by performing heuristic decisions in the form of interval splits. For example, the midpoint
of an interval could be chosen as the new upper or lower bound. This is repeated until all intervals have a width
below a given minimum splitting width. After performing such an interval split, ICP is applied again to deduce
the consequences of the split. Of course, such a heuristic decision might lead to an inconsistency. In such a case,
the last decision has to be reverted in order to try the interval part which was excluded by the split – resulting
in a search process with backtracking. Instead of just reverting the last decision, it is also possible to perform
a more thorough analysis to isolate the cause of the current inconsistency – which is not necessarily the last
decision. Such an analysis is part of the iSAT algorithm. Its details are explained in the next subsection.

3.2 The iSAT Algorithm

In order to perform a more thorough analysis in case of an inconsistency, an implication graph is used to keep
track of the deductions performed by ICP. Besides the deduced lower or upper bounds, it also contains the
reasons for each deduction – i.e. the relevant bounds of the other variables in the equation examined by ICP.
For example, if ICP examines the equation x = y + z together with the current interval valuation x ∈ [0, 10],
y ∈ [2, 5] and z ∈ [1, 3], then the newly deduced lower bound of x is recorded as ((y ≥ 2) ∧ (z ≥ 1))⇒ (x ≥ 3)
in the implication graph. Thus, (y ≥ 2) and (z ≥ 1) can be understood as the reasons for this deduction.

The implication graph is partitioned into decision levels – one level for each decision (i.e. a heuristic interval
split). If ICP detects an inconsistency, then an interval of a variable x became empty, i.e. xlb > xub. If this
inconsistency happens on decision level 0 (i.e. without performing a decision), the formula is proved to have no
solution – i.e. it is unsatisfiable and no further analysis is required. Otherwise, xlb and xub are analyzed – as
at least one of both bounds was deduced by ICP and thus has reasons. Basically, those reasons which were
themselves deduced on the current decision level are analyzed in order to obtain one reason which is the first
unique implication point (1UIP) [20]. The result is a set of reasons R being assigned (i.e. deduced or decided)
on earlier decision levels together with the 1UIP which was assigned on the current decision level. Hence, the
result is just a new implication: the set of reasons R assigned on earlier decision levels implies the 1UIP. This
deduction can be applied on the highest decision level among the decision levels in R – allowing non-chronological
backtracking. Usually, the set of reasons in R is small compared to the number of variables in the overall problem,
i.e. R is a rather local explanation for the observed inconsistency. Therefore, it is advantageous to learn such
implications. If a similar situation occurs again during the search process, such a learned implication can be
reused in order to prevent an already known inconsistency to be visited again.

2In this concrete case the effect can be mitigated by adding: (y2 = 2 · y) ∧ (z2 = 2 · z) ∧ (w = x− y2) ∧ (w = z2 − x)



Here, we motivated the iSAT algorithm as ICP-based search process with non-chronological backtracking and
learning. In the context of satisfiability checking, the motivation is somewhat different. Satisfiability Modulo
Theories (SMT) considers Boolean combinations of theory atoms – e.g. Boolean combinations of equations and
inequalities containing non-linear real arithmetic. When performing lazy SMT solving, the Boolean skeleton is
processed by a (usually CDCL-based) SAT solver which determines a valuation for the truth values of the theory
atoms. A separate theory solver is used to check whether there is a solution in the conjunction of theory atoms
under the given truth values. If this is not the case, a (hopefully) small subset of the theory atoms is returned as
conflict explanation to the SAT solver. In the iSAT algorithm there is no separation between the SAT solver and
the theory part – instead ICP is tightly integrated into CDCL. In fact, each interval bound can be considered
as a literal – depending on its polarity it represents a lower or an upper bound. Thus, the iSAT algorithm
performs CDCL [18] and the 1UIP based conflict analysis [20] on top of interval bounds. Due to ICP, the iSAT
algorithm can be adapted to handle a broad range of arithmetic operations. Besides non-linear real arithmetic
and transcendental functions, it is also possible to perform accurate reasoning for floating-point arithmetic [17].

Our approach uses a solver core being similar to iSAT3 [16] – which is the third implementation of the iSAT
algorithm. Currently, our scenario formalism results in a conjunction of equations. As the iSAT algorithm
considers Boolean combinations of theory atoms, our approach can be easily adapted if the scenario formalism
is extended with Boolean structure – e.g. by having multiple versions of one phase and requiring that exactly
one of these versions has to be selected.

3.3 Converting a Scenario to a Formula

In the following we give an overview of the basic building blocks the complete formula is composed of. The
current version of SCS divides each traffic phase into two sub-phases with equal duration3 – i.e. if di is the
duration of Pi, then each sub-phase has duration d′i = 1/2 · di. But in order to simplify the presentation of the
formulas, we neglect this division. In fact, the formulas presented below are also used within a sub-phase – but
depending on whether the sub-phase is the first or last, the intervals specified by the constraints are applied to
different variables, i.e. initial conditions are applied to the first sub-phase, while final conditions are applied to
the last sub-phase.

As the duration di of a phase Pi might be an interval, it is a variable within the equations. Thus, the resulting
set of equations is non-linear. For each vehicle h and each phase the following set of equations is generated for
the x and y dimension (indices for h, x, y and the phase are omitted in favor of better readability):

sum of speed = initial speed + final speed
average speed = 1/2 · sum of speed
change of speed = final speed − initial speed
change of speed = rate of speed · di
change of position = final position − initial position
change of position = average speed · di

In case of the y dimension initial position and final position are point intervals representing the center of the
source lane s and target lane t specified in the lane(h, s, t, r) constraint. The change rate r from this constraint
corresponds to the invariant speed in the y dimension. As shown in Section 2.2, the speed evolves linearly
from its initial to its final value within each time step. Thus, it suffices to use the interval of the invariant
speed as a further restriction for the intervals of initial speed and final speed. For the x dimension, the position
stays unconstrained while initial speed, final speed and rate of speed are constrained by i, f and r from the
speed(h, i, s, f, r) constraint. Here again, the invariant speed s is an additional restriction for initial speed and
final speed.

In case a distance() or speed diff() constraint exists for a vehicle pair (h1, h2) in at least one phase, then the
following set of equations will be added to each phase (the indices 1 and 2 correspond to h1 and h2 respectively):

initial speed diff = initial speed2 − initial speed1

final speed diff = final speed2 − final speed1

change of speed diff = final speed diff − initial speed diff
change of speed diff = change of speed2 − change of speed1

change of speed diff = rate of speed diff · di
3In the future we plan to determine the number of the sub-phases dynamically – e.g. depending on the phase duration



sum of speed diff = initial speed diff + final speed diff
average speed diff = 1/2 · sum of speed diff
average speed diff = average speed2 − average speed1

initial distance = initial position2 − initial position1

final distance = final position2 − final position1

change of distance = final distance − initial distance
change of distance = change of position2 − change of position1

change of distance = average speed diff · di
It should be noted that these equations are only added for the x dimension – as the speed dif-
ference and distance are not considered in the y dimension. Each speed diff(h1, h2, i, s, f, r) con-
straint restricts initial speed diff, final speed diff and rate of speed diff with i, f and r. The in-
variant speed difference s is an additional restriction for initial speed diff and final speed diff –
similar to the speed() constraint. Furthermore, each distance(h1, h2, i, d, f, r) constraint restricts
initial distance and final distance with i and f as well as d. The change rate r restricts the invariant speed
difference and thus initial speed diff and final speed diff. In contrast to the speed, the distance does not neces-
sarily evolve linearly within a phase. In particular, it could happen that the distance reaches its peak somewhere
within a phase – depending on how the speed difference evolves. Hence, the invariant distance is only partially
handled at the moment.

The formula creation is ICP-aware, i.e. it includes some redundant equations, which support the deductions
performed by ICP. For example, it is advantageous to generate the above shown set of equations for a vehicle pair
(h1, h2) in each phase – as this allows ICP to propagate the distances and speed differences to the surrounding
phases which might be subject to further constraints for this vehicle pair. Additionally, cyclic dependencies of
vehicle pair constraints result in further equations to be added. For example, if the vehicle pairs (h1, h2), (h2, h3)
and (h1, h3) are subject of distance or speed difference constraints, then the following equations are generated:

initial distance1,3 = initial distance1,2 + initial distance2,3
final distance1,3 = final distance1,2 + final distance2,3
initial speed diff1,3 = initial speed diff1,2 + initial speed diff2,3

final speed diff1,3 = final speed diff1,2 + final speed diff2,3

3.4 Decision Heuristics to Guide the Interval Splits

Due to the formula structure and the deductions performed by ICP, reductions in the interval width of
the variables representing speeds or durations imply that the intervals of other variables will shrink as
well, e.g. change of speed, average speed, change of position, change of speed diff, average speed diff as well as
change of distance. Thus, intuitively, it seems to be advantageous to split speed and duration variables first –
this also conforms with our empirical observation. Therefore, we use three buckets for variables representing
(B1) speeds or durations, (B2) distances, and (B3) positions. Variables in (B2) are only considered if (B1) is
empty – similarly, all variables in (B2) are split before any variable from (B3) is processed. The variables in each
bucket are selected pseudo-randomly. Furthermore, each interval split of a variable alternates between cutting off
the lower or upper interval part – the size of this part varies pseudo-randomly between 1/3 and 1/8. Additionally,
we use different minimum splitting widths in each bucket: (B1) 2−38, (B2) 2−37, and (B3) 2−36.

4 Experimental Results

For technical reasons SCS is embedded into a Java-based framework and is itself written in Java4. As mentioned,
the core of SCS is similar to the core of iSAT3 [16]. Hence, iSAT3 is a natural candidate for a comparison. We
use it with two different settings regarding the minimum splitting width5: iSAT3a uses 2−36 (similar to SCS)
while iSAT3b applies its default value of 0.1. Furthermore, we compare SCS with MathSAT [4], Yices [6], Z3 [14]
and CVC4 [2] – as these solvers are also able to solve formulas with non-linear arithmetic. On the other hand,
these four solvers search for a solution which satisfies all constraints without a violation (no matter how small it
is), while SCS as well as iSAT3 exploit the knowledge that constraints might be violated by a small margin 6.

4As Java does not allow to change the floating-point rounding mode, outward rounding is emulated with Math.nextafter().
5 iSAT3a: --msw 0x1.0p-36 --mpr 0x1.0p-40, iSAT3b: --msw 0.1 --mpr 0.01
6This margin correlates with the minimum splitting width – but is not equivalent to it, as the formula structure has an influence

as well.



R / #V / #P MathSAT Yices Z3 CVC4 iSAT3a iSAT3b SCS

SA UNS / 4 / 1 0.06s 0.01s 0.04s 0.21s 0.01s 0.01s 1.14s
SA UNS / 4 / 2 0.11s 0.02s 0.09s 0.41s 0.02s 0.02s 1.34s
SA UNS / 4 / 5 0.31s 0.08s 0.83s 1.16s 0.08s 0.09s 1.69s
SA UNS / 4 / 10 0.84s 0.15s 11.08s 2.87s 0.24s 0.28s 2.29s
SA UNS / 4 / 20 1.87s 0.29s 778.54s 6.24s 0.63s 0.54s 2.75s
SB UNS / 5 / 1 0.07s 0.02s 0.16s 0.27s 0.03s 0.02s 1.37s
SB UNS / 5 / 2 0.16s 0.04s 0.22s 0.58s 0.07s 0.09s 1.59s
SB UNS / 5 / 5 TO 10.94s 2.14s TO 0.30s 0.34s 1.76s
SB UNS / 5 / 10 1.23s 0.45s 3.37s 4.02s 0.81s 0.95s 2.47s
SB UNS / 5 / 20 3.01s 0.58s TO 8.66s 2.01s 1.95s 3.56s
SA SAT / 2 / 1 0.17s 0.07s 0.02s 1.08s 1.11s 0.66s 1.37s
SA SAT / 2 / 2 TO 0.27s 0.04s TO 10.22s 0.97s 1.28s
SA SAT / 2 / 5 TO TO 0.34s TO 14.06s 3.66s 1.50s
SA SAT / 2 / 10 TO TO 2.63s TO TO 20.25s 1.66s
SA SAT / 2 / 20 TO TO 493.81s TO TO 54.82s 2.59s
SA SAT / 3 / 1 0.50s 0.07s 0.03s TO 0.28s 0.31s 1.69s
SA SAT / 3 / 2 TO 0.49s 0.10s TO 0.43s 1.42s 1.31s
SA SAT / 3 / 5 TO 34.10s 1.33s TO 12.48s 7.29s 1.98s
SA SAT / 3 / 10 TO TO TO TO TO 16.23s 4.74s
SA SAT / 3 / 20 TO TO TO TO TO 128.76s 54.92s
SA SAT / 4 / 1 0.90s 0.17s 0.05s TO 94.96s 0.27s 1.26s
SA SAT / 4 / 2 TO TO 0.14s TO 0.53s 1.42s 1.66s
SA SAT / 4 / 5 TO 46.21s 0.97s TO MO 29.37s 1.89s
SA SAT / 4 / 10 TO TO TO TO TO 127.25s 13.40s
SA SAT / 4 / 20 TO TO TO TO MO 218.18s 86.52s
SB SAT / 3 / 1 0.34s 0.04s 0.03s 0.13s 0.03s 0.02s 1.30s
SB SAT / 3 / 2 1.64s 0.28s 0.06s 0.26s 0.14s 0.06s 1.27s
SB SAT / 3 / 5 TO 4.48s 0.36s TO 9.74s 3.07s 1.53s
SB SAT / 3 / 10 TO 116.30s 4.51s TO 13.47s 26.01s 2.80s
SB SAT / 3 / 20 TO TO TO TO MO 270.86s 5.15s
SB SAT / 4 / 1 0.51s 0.22s 0.07s 0.21s 0.06s 0.09s 1.17s
SB SAT / 4 / 2 5.56s 1.74s 0.24s 0.44s 0.54s 0.28s 1.51s
SB SAT / 4 / 5 TO 11.26s 0.56s TO 52.42s 2.19s 1.69s
SB SAT / 4 / 10 TO TO 9.72s TO TO 60.40s 5.09s
SB SAT / 4 / 20 TO TO TO TO TO 596.45s 21.20s
SB SAT / 5 / 1 1.50s 0.11s 0.11s 0.31s 1.67s 0.25s 1.35s
SB SAT / 5 / 2 17.27s 5.48s 0.19s 0.68s 2.55s 0.45s 1.67s
SB SAT / 5 / 5 TO 31.10s 0.81s TO TO 2.63s 2.39s
SB SAT / 5 / 10 TO TO 13.52s TO MO 78.92s 18.32s
SB SAT / 5 / 20 TO TO TO TO TO TO 40.49s∑

UNS solved 9 10 9 9 10 10 10∑
SAT solved 9 17 23 7 17 29 30

Table 1: Comparing MathSAT 5.5.4, Yices 2.6.1, Z3 4.8.4, CVC4 1.6 and iSAT3 0.04-20170301 (with two different
settings) with SCS on the formulas generated for the scenario families SA and SB .



The comparison is performed on the basis of the formulas generated by SCS, i.e. the formulas are written out
and converted to the HYS format (for iSAT3) and to the SMT2 format (for MathSAT, Yices, Z3 and CVC4)7.
Thus, all solvers operate on the same formulas. In order to obtain small and large instances, the scenarios SA
and SB (cf. Section 2.3) are parameterized regarding the number of vehicles and phases. The formula sizes
range from 150 variables and 180 equations (containing arithmetic operations) up to 11 600 variables and 16 100
equations. We generated satisfiable and unsatisfiable instances – for an equal number of vehicles and phases the
satisfiable and unsatisfiable instances only differ in the intervals constraining the variables.

The results are listed in Table 1. While the first column shows the scenario family, the second column lists
the expected result – i.e. whether an instance is satisfiable (SAT) or unsatisfiable (UNS) – as well as the number
of vehicles and phases. The remaining columns either list the runtime in seconds or contain TO (for time-out)
or MO (for memory-out). While the measurements for MathSAT, Yices, Z3, CVC4 and iSAT3 were performed
under Debian 9 on an Intel Xeon E5-2690 with 2.6 GHz and a time limit of 900 seconds as well as a memory
limit of 15 GB, SCS was executed under Windows 7 on an Intel Xeon E5-2695 with 2.3 GHz and a memory limit
of 2 GB. Besides being written in Java and executed on a slightly slower CPU, the runtime of SCS contains an
additional overhead of several hundred milliseconds: the import of the scenario from the surrounding framework,
the creation of a trajectory for each vehicle to be visualized graphically as well as the generated formula being
written to a file.

The results show that the unsatisfiable instances are solved within seconds in most of the cases. While
MathSAT, Z3 as well as CVC4 have one unsolved instance, Yices, iSAT3 and SCS are able to solve all unsatisfiable
instances. In case of iSAT3 the result is not surprising, because it applies the same ICP-based reasoning as
SCS. With ICP the unsatisfiability of the instances can be determined with a low number of non-chronological
backtracking operations – the decision heuristics plays a minor role in these cases.

The picture changes when considering the satisfiable instances. Here, CVC4 and MathSAT each solve less
than a third of the 30 instances. In particular, the instances of SA are hard to solve for both solvers. Yices
and Z3 show better performance, but still have time-outs for 13 and 7 instances respectively. The numbers of
iSAT3a, iSAT3b and SCS can be seen as an indicator for the effectiveness of the decision heuristics used by SCS.
As the the core of SCS is similar to the core of iSAT3, the numbers of iSAT3a give an impression how SCS
would perform without its tailored decision heuristics. Although iSAT3b has only one time-out, the quality of
its result (in terms of the margin a constraint might be violated) is worse compared to iSAT3a and SCS – in this
set of instances, the violation margin of SCS is below 10−12, while it is above 10−3 for iSAT3b. This comes due
to the coarser minimum splitting width used by iSAT3b. Additionally, it can be observed that iSAT3a exceeded
its memory limit of 15 GB in four cases, while SCS stays within its limit of 2 GB for all instances. Hence, the
decision heuristics of SCS prevents that ICP deduces millions of new bounds even with a very small minimum
splitting width. Overall, SCS is the only solver which was able to solve all instances. Furthermore, its decision
heuristics allows SCS to outperform the other solvers in particular on larger satisfiable instances.

5 Conclusion

In the context of safety validation for autonomous vehicles, virtual validation is one promising approach to
reduce the amount of testing in the real world. In this context, formally specified scenarios are used to describe
the real-world traffic situations which have to be tested. In order to derive a test case from such a scenario, a
concretization is needed. In this paper we investigated the concretization regarding a constraint-based scenario
formalism containing interval parameters.

We identified this problem class as another application of the iSAT algorithm. Exploiting the domain specific
knowledge, we adapted the solving strategy by an ICP-aware formula generation and a tailored decision heuristics.
The resulting Scenario Concretization Solver (SCS) outperforms other solvers in particular on larger satisfiable
instances.
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