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Abstract

Satisfiability-modulo-theories (SMT) solving is a technique for check-
ing the satisfiability of logical formulas. In this context, recently a
framework called model-constructing satisfiability calculus (MCSAT)
has been introduced which relaxes some design restrictions of the clas-
sical SMT setting and allows more freedom to construct an efficient
interplay between the search for models in the Boolean and the theory
domains. In this paper we discuss issues of dynamic variable orderings
to drive the MCSAT model search for the theory of non-linear real
arithmetic.

1 Problem Statement

Satisfiability-modulo-theories (SMT) solving is a technique for checking the satisfiability of (usually quantifier-
free) first-order logic formulas. In classical lazy SMT solving, the search is decomposed in two interacting
modules: at the Boolean level, truth values are searched for the theory constraints of an input formula such that
the Boolean structure (the Boolean abstraction) of the formula is satisfied; this Boolean search is assisted by
theory consistency checks for the corresponding constraints as selected by the current Boolean truth assignment.

Accordingly, a classical SMT solver consists of two components: a Boolean solver and a theory solver. The
Boolean solver, which is typically a SAT solver based on techniques called DPLL [DLL62] and CDCL [MsS99],
searches for a solution for the Boolean abstraction by deciding which truth values to try for the theory constraints,
propagating already assigned Boolean values to derive implications, and resolving Boolean conflicts occurring
during propagation. During this search, the SAT SOIVGIE passes theory constraints corresponding to the current
(possibly partial) Boolean model to the theory solver. The theory solver checks the consistency of the given
constraints in the theory, usually by constructing a model for the theory variables, or returns an explanation
for the unsatisfiability in cases where no such assignment exists. The latter explanations are added to the
original formula to exclude theory-inconsistent Boolean models from the further search. The search continues
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n the following, when we talk about a SAT solver then we mean one based on DPLL and CDCL.



until either both the SAT and theory solver have constructed a complete assignment for both the Boolean and
theory variables or all Boolean assignments have been excluded.

Recently, a framework called model-constructing satisfiability calculus (MCSAT) was introduced [JAM12l
dMJ13], which allows the simultaneous construction of Boolean and theory models, enabling more freedom for
the design of the interplay between the search in the Boolean and in the theory domains. In this approach,
the Boolean and theory modules from the classical framework are merged into a single solver that works on
the Boolean structure and the theory simultaneously. This solver performs decisions not only on the Boolean
(abstraction) variables, but also on the theory variables by making theory decisions. Throughout the procedure,
the two models are kept consistent, meaning that the truth values of constraints at the Boolean level never
contradict to their evaluation under the theory model. When the current partial theory model cannot be
further extended to a complete and consistent theory model, theory conflict resolution is applied to generate an
explanation in form of a lemma that can be learned to exclude this and “similar” inconsistent guesses from the
further search.

In quantifier-free non-linear real arithmetic, the constraints are polynomial equalities or inequalities over the
real domain. For this theory, we have implemented in our SMT-RAT solver |[CK.J™ 15| different theory solver modules
for classical SMT solving. Additionally, we have also adapted for MCSAT the cylindrical algebraic decomposition
method (CAD), the virtual substitution method (VS) and the Fourier-Motzkin variable elimination method (FM)
for generating explanations. For CAD, we employ the approach outlined in [JAM12] (commonly known as nlsat),
where we support different projection operators, and alternatively implement an adaptation of the OneCell-CAD
approach presented in [Brol3l, [BKT5] for explanation generation as described in [Neul8]. The adaptation of VS
is based on our presentation from [ANKl?], where elimination is restricted to the unassigned variables. The
Fourier-Motzkin variable elimination is adapted in the spirit of [JBAMI3], enhanced with explicit support for
equalities and weak inequalities.

It is well-known that the variable ordering is a crucial ingredient both in theory and practice for many solving
techniques. For all of the above methods — SAT solving, FM, VS and CAD — the variable ordering can move the
performance from the worst-case to “almost trivial” or vice-versa. At the same time finding the best (or at least
a “good”) variable ordering in a reasonable amount of time is essentially impossible in all cases. Thus heuristics
are heavily used in practice to find reasonably good variables orderings quickly.

The original MCSAT approach for non-linear real arithmetic [JAMI12] assumes a static ordering of theory
variables. This static variable ordering guides also the Boolean search: the solver identifies those clauses that are
univariate in the first unassigned variable in the static theory variable ordering under the current theory model
(i.e., the first unassigned theory variable is the only unassigned one occurring in them) and performs Boolean
propagations and Boolean decisions only with respect to those clauses. If all such clauses are satisfied at the
Boolean level then the next theory decision is made, extending the theory model in agreement with the Boolean
model (if possible). While we can use a form of conflict-driven activity-based heuristics (like VSIDS) for the
Boolean variables, the static theory variable ordering heavily restricts the flexibility here.

The restriction to consider univariate clauses only was already lifted in [dMJ13|] and the possibility to even
include the theory variables in such an activity-based heuristic — essentially treat Boolean and theory variables
equally in one combined variable ordering — was proposed [JBAM13]. Note however that [dM.J13] described the
general MCSAT framework independently of a specific theory and [JBAM13] only discusses linear real arithmetic
(combined with uninterpreted functions). Unfortunately, this does not directly transfer to non-linear real arith-
metic: while reqular polynomial constraints have a clear semantic meaning independently of the variable ordering,
we need to consider extended polynomial constraints (as defined in [JAM12]) that pose additional challenges under
changing variable orders.

In the remainder of this paper we discuss how to design MCSAT for non-linear real arithmetic with dynamic
theory variable ordering, meaning that the ordering of any variables may change throughout the computation.
This includes necessary algorithmic modifications, some considerations for the implementation and completeness
issues. Finally, we report on some preliminary experiments. We assume the reader to be reasonably familiar
with the MCSAT framework as presented in [JAMI12] [dMJ13] as well as SAT solving and classical SMT solving.

2 Variable orderings in MCSAT

The fundamental idea of MCSAT is to construct the Boolean model and theory model simultaneously. This
allows the Boolean reasoning and the theory reasoning to complement (and possibly learn from) each other
more flexibly than in traditional SMT solving. The wariable scheduler is the crucial component driving this



process, mainly determining how we interleave Boolean and theory reasoning. Given the importance of the
variable ordering on practical performance, it is possible (even probable) that more elaborate computations in
the scheduling heuristics pay off in terms of overall solving time.

When devising a variable scheduling heuristic we need to answer two questions: Firstly, how should we
interleave (or prioritize) the Boolean and theory reasoning? Secondly, how should the variables (both Boolean
and theory) be ordered? For Boolean variables solvers usually rely on conflict-driven activity-based heuristics like
VSIDS while theory variables are mostly static (based on some heuristic) throughout the whole solving process.

Experience shows that constructing a good variable ordering upfront is hard. Even for a pure CAD (or VS)
computation that is not embedded in some other framework (like traditional SMT or MCSAT) the results are
mixed. The existing heuristics almost exclusively focus on syntactic properties (like variable degree or number of
occurrences), and adversarial inputs seem to be neither hard to construct nor particularly contrived or artificial.

Similar to CDCL-style SAT solving — and following [JBAM13] — we therefore use a dynamic variable ordering
for theory variables as well in the hope to learn an efficient variable ordering during solving.

2.1 MCSAT Extensions in SMT-RAT

Our implementation contains several changes compared to the descriptions from [JAM12l [dMJ13| [TBdM13] that
influence which heuristics can be used and how we can implement them. Some are clearly beyond the previously
published descriptions while others are possibly intended by the authors but have not been made explicit.

e Our core solver is based on a CDCL-style SAT solver (MiniSAT) and thus incorporates all common optimiza-
tions and heuristics that go beyond what is presented in [JAM12l [dMJ13] for the Boolean reasoning.

e A set of active literals is maintained that contains those literals occurring in not-yet satisfied clauses. It is
sufficient to decide only literals from this set to obtain a complete procedure.

e Before a Boolean decision is made, we check for feasibility together with the current theory model. That
is, after deciding the constraint we do not run into an immediate theory conflict. If the constraint is not
feasible, we insert its negation as a lazy theory propagation. If this propagation leads to a conflict later on, the
explanation is generated on request. This is essentially one concrete way how to apply the T-PROPAGATE
rule from [dMJ13].

e Whenever a theory assignment is computed, we optionally apply substitution of the current partial model
in the assigned literals, collect those that are linear after the substitution and use a Simplex-based solver to
check their consistency. This may yield a satisfying model for the whole set of assigned literals, or allow to
determine infeasibility earlier.

e We combine multiple ezplanation backends (similar to [JBAM13]) based on FM, VS, CAD as in [JdM12] and
OneCell-CAD. Besides allowing to fall back to “more complete” explanation backends, the variable scheduler
could also exploit a particular combination of backends by favouring constraints that can be handled by
more efficient methods (for example linear constraints).

2.2 Heuristics

To evaluate the implementation and get a first feeling on the impact in practice, we consider several different
variable orderings here:

Boolean first. All Boolean variables are decided first with an activity-based dynamic ordering before any
theory decision is made. We use a static theory variable ordering based on features like maximum degrees
or coefficients roughly following the “triangular ordering” from [EBDW14]. Many possibilities here are yet
unexplored, for example other variable orderings proposed in [EBDWT4] or [DSS04].

Theory first. Same as Boolean first, but theory decisions are made before any Boolean decision is made. Note
that after deciding all theory variables, only Boolean variables not representing a theory constraint need to
be decided.

Univariate constraints. Like before we use a static ordering for theory variables and a dynamic ordering for
Boolean variables. For Boolean decisions we only consider variables that are univariate under the current
theory model and perform a theory decision if none is left. This interleaves the Boolean and theory reasoning
and, combined with active literals tracking, is very similar to nlsat from [JdM12].



Uniform activies. As in [JBAM13], the activity is tracked for both Boolean and theory variables in a conflict-
driven manner (like VSIDS). For Boolean variables, those are the resolution variables, and for theory vari-
ables, those are the ones occurring in the corresponding theory constraints, counted only once per conflict.
The unassigned variable (Boolean or theory) with highest activity is decided first.

Random. A random ordering over all variables (Boolean and theory) is fixed and decided in this order. This
strategy is only used as a reference.

3 Issues with dynamic variable orderings

As already noted using a dynamic ordering for theory variables has some consequences that go well beyond what
we know from regular SMT solving.

3.1 Handling extended polynomial constraints

Explanations from a CAD-based explanation backend may contain extended polynomial constraints of the form

y ~root;(p(z,x1,...,2n))

where ~ € {<,>,=,#,<, >}, v, 2,21, . . ., T, are real-valued variables, p is a polynomial with rational coefficients
and variables z,21,...,z,. If 21,...,2, are assigned to values a(x1),...,a(x,), then root,(p(z,z1,...,2,))
represents the ith zero of the univariate polynomial p(z, a(z1),...,a(x,)) in z. Such a constraint evaluates to

true if the ith root ezists and «(y) compares to this root as indicated by ~, and to false otherwise.

Assuming a fixed theory variable ordering, the way how such extended polynomial constraints are constructed
within the explanation guarantees that for each of these constraints x1,...,z, are assigned before y and thus
the above semantics are well-defined. Changing the theory variable ordering may lead to a situation where y
is assigned while some x; € {x1,...,z,} is still unassigned if the respective constraint was generated under a
different variable ordering. In some sense, we no longer have a constraint on y but a constraint on x;. Since
the semantics for such an expression is not well-defined, a consistent value for z; cannot be calculated making
theory decisions impossible. Note that the above semantics could be extended, but actually using constraints
under these extended semantics has proven to be extremely difficult — if not impossible — in practice.

We currently employ a rather simple solution: we disable (i.e. exclude from theory consistency checks) all

constraints of the form y ~ root;(p(z,z1,...,z,)) where some x1,...,x, is not yet assigned but y has been
chosen for a decision. We observe that constraints are not necessarily disabled if the ordering changes but only
if the ordering becomes incompatible (y moves before one of z1,...,2,). Note that constraints can safely be

re-enabled, whenever its ordering is compatible with the current one again: Then, they do not immediately
evaluate to a value as at least y is not assigned.

Note that after disabling a constraint, the regions excluded by it might be considered again. However, this does
endanger termination: For any region and for each particular ordering, at most finitely many explanations are
generated excluding this region. Additionally, any two explanations excluding a common region but generated
under different incompatible orderings either are unequal or one of them is not generated (as then, no constraint
would have been disabled); thus, no explanation is learned twice.

3.2 Completeness

While a SAT solving process advances with any Boolean conflict resolution, for MCSAT the explanation backends
need to fulfill additional requirements for completeness. The completeness proof of MCSAT from [JAM12] requires
that all constraints occurring in an explanation clause must come from some finite set of constraints that depends
on the input formula; we then say that an explanation backend fulfils the finite basis property. This property
holds for all the described explanation backends individually under a static theory variable ordering based on
the following (inductive) argument: given a finite set of k-dimensional constraints, these explanation backends
can construct only finitely many new constraints of dimension k — 1 or less and we can (conceptually easily)
enumerate all of them. Based on this enhanced set, we can construct the constraints of dimension k& — 2 or less,
and so on, ultimately obtaining a finite basis.

This argument still holds if we combine multiple explanation backends using the same static variable ordering.
Note that the variable ordering of these explanation backends is not identical by construction: while the ordering
on the assigned variables is fixed by the MCSAT trail we can have multiple unassigned variables whose ordering



is unspecified. Though explanations never contain unassigned variables, it is not immediately clear whether
explanation backends that use different orderings for unassigned variables can be combined safely.

If the variable ordering is dynamic, we lose the finite basis property as we can see from the counterexample
for Fourier-Motzkin and VS shown in Example [I|and we assume similar examples to exist for CAD. Though this
technically does not prove incompleteness, we doubt that some weaker property exists so that the procedure still
terminates in all cases with an infinite basis for explanations.

Example 1 For the set of constraints

{1 =2, 21 =229, T3 =211}
~—— —— ——

cy co c3
an infinite sequence of new constraints can be created by either FM or VS steps:
o eliminating x1 in {c1,co} gives cq : kg =1,
o climinating xo in {c3,ca} gives cs : 2z =1,
e climinating x1 in {ca,c5} gives cg : dwg = 1,
o eliminating x2 in {cs,ce} gives ¢y :8x1 =1, ...

We can assure completeness with a stronger version of what we described as disabled constraints in Section [3.1
we store the variable ordering that was used when some clause was constructed and disable the whole clause
for decisions and propagations when the current variable ordering is incompatible. With the same argument
as given in Section [3.I] the procedure remains complete as lemmas are not generated twice and we only have
finitely many variable orderings.

However, our main goal in making the theory variable ordering dynamic is not to work on the core problem
from different perspectives — as one could understand CDCL-style SAT solving — but rather find an advantageous
ordering dynamically and eventually settle on this one. The (syntactic) finite basis property ensures that every
conflict makes at least a certain amount of progress (by excluding one of finitely many regions). Ever-changing
theory variable orderings can easily lead to non-termination in MCSAT as we have seen in Example [I] by
(potentially) excluding infinitesimally small regions. Note however that we consider this a theoretical issue: if
we ensure that the theory variable ordering becomes stable at some point, similar to how restarts are handled
in CDCL-style SAT solving, we can assume this to be safe in practice.

4 Experimental Results

The relative performance of the heuristics we defined above on the SMT-LIB benchmark set for QF_NRA are
shown in Table [1] and Figure [1] It should be noted that a large part of the SMT-LIB [BETT6] benchmark set for
QF_NRA has no complex Boolean structure. Throughout the experiments, we used a combination of the FM,
VS and Onecell-CAD explanation backends by calling them in this order and falling back to the next backend if
one failed.

Table 1: Solved instances by variable ordering heuristics

Solver SAT UNSAT overall

Random 4533 4694 9227 80.3 %
Boolean first 4532 4716 9248 80.5 %
Univariate 4565 4721 9286 80.8 %
Univariate 4+ active literals 4644 4775 9419 82.0 %
Uniform activities 4701 4774 9475 825 %
Theory first 4698 4779 9477 825 %

We observe that the Boolean first strategy works only slightly better than a random ordering and significantly
worse than most other heuristics. Univariate constraints improves upon this, in particular if combined with
active literals tracking which is close to the nlsat heuristic from [JdM12]. However, active literals tracking
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Figure 1: Performance of variable ordering heuristics

brings no benefit when combined with Theory first or Uniform activities. The Uniform activities and Theory
first strategies perform best with Theory first having a slight advantage in terms of the average running time.

The success of both the Theory first and Univariate + active literals strategies may indicate that the nlsat
strategy from [JAM12] is effective because Boolean decisions are delayed, and it actually delays them even more
than the Univariate + active literals strategy: while we only consider univariate literals from not yet satisfied
clauses, nlsat only considers literals from univariate clauses. We did not yet implement the nlsat strategy in
our solver.

One may assume that the Uniform activities strategy performs well because it essentially converges towards
the Theory first ordering. This is however not the (only) reason for its effectiveness. We experimented with ways
to further increase the activities of theory variables compared to Boolean variables: increasing activities of theory
variables multiple times per conflict; strictly favouring theory variables in the case of equal activities; using the
Theory first strategy where the theory variables are ordered according to activities. All of those performed worse
than just using uniform activities, suggesting that Uniform activities and Theory first are effective for different
reasons.

5 Future work

We have seen that the variable ordering has a significant impact on the overall performance and might be the
key to better running times in practice. We only had a first glimpse of the possibilities that result from dynamic
variable orderings. It is not clear yet that lifting all restrictions are strictly beneficial, but the preliminary
experiments we presented could be evidence for this.

We aim at investigating other variable ordering schemes that combine established dynamic heuristics from
SAT solving with variable ordering heuristics borrowed from the computer algebra community. It should be
noted however that experimenting with variable orderings should not be overly specialized by “overfitting” to
the SMT-LIB benchmark set.

Dynamic variable orderings also give rise to theoretical questions about the completeness of MCSAT. While we
presented evidence for non-termination (under extremely pessimistic assumptions about MCSAT), we conjecture
that termination can be assured for reasonable (dynamic) variable orderings with arguments resembling the use
of restarts in SAT solving.
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