
99

GPU accelerated Monte Carlo sampling for
SPDEs

Nikolay Shegunov, Peter Armianov, Atanas Semerdjiev,
Oleg Iliev

Faculty of Mathematics and Informatics, Sofia University,
Bulgaria

ITWM Fraunhofer, Kaiserslautern, Germany

{nshegunov, parmianov, asemerdjiev}@fmi.uni-sofia.bg

{oleg.iliev}@itwm.fraunhofer.de

Abstract

Monte Carlo sampling methods is a broad class of computational
algorithms, that rely on repeated random sampling to obtain numer-
ical results. The idea of such algorithms is to introduce randomness
to solve problems, even in the deterministic case. Such algorithms
are often used in physical and mathematical problems and are most
useful when it is difficult or impossible to use other approaches due to
limitations, such as cost of performing experiment or inability to take
direct measures. The problems typically require solving a stochastic
partial differential equations (SDPEs), where an uncertainty is incor-
porated in to the model. For example: as an input parameter, or
initial boundary condition. Extensive efforts have been devoted to
the development of accurate numerical algorithms, so that simulation
predictions are reliable in since that the numerical errors are well un-
derstood and under control for practical problems. Multilevel Monte
Carlo (MLMC) is a novel idea. Instead of sampling from the true solu-
tion, a sampling is done at different levels. Such approach is beneficial
in terms of convergence rate. However for practical simulations a large
number of problems has to be solved, with huge number of unknowns.
Such computational restrictions naturally leads to challenging parallel
algorithms. To overcome some of the limitations, here we consider a
parallel implementation of MLMC algorithm for a model SPDE, that
uses GPU acceleration for the permeability generation.

��������	
�
���
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��
 �	����	����!
"��
#$
��%�

100

1 Introduction

Many mathematical models describing industrial problems are subject to
uncertainty due to some limitation. Incorporating the uncertainty typically
leads to more accurate representation of the world. However it is in the
cost of solving a statistical problem, for example one can consider saturated
flow in subsurface, or heat condition in Metal Matrix Composites. Such
stochastic models require enormous computational effort, thereby requiring
new fast algorithms to facilitate that need. In this paper we consider a scalar
elliptic SPDE describing single phase flow throughout heterogeneous porous
media. Although the approach here is not limited to this problem, we aim at
computing the mean flux throughout saturated porous media with prescribed
pressure drop and known distribution of the random coefficients.

One of the preferred and powerful methods for solving SPDE is Multilevel
Monte Carlo algorithm (MLMC). The algorithm exploits a combination of
fewer expensive computations with a plenty of cheap ones to compute ex-
pected values at significantly lower computational cost then standard Monte
Carlo. A key component is the selection of the different levels of combination.
Many different approaches exist. In [1] authors use the number of therms of
Karhunen-Loewe expansion in order to define coarser levels. In [4], similarly
to our approach, the coarser levels are defined on coarser grids via averaging
of the coefficients in the PDE. Here we construct the levels by renormaliza-
tion. For details we reefer to [5, 3]. For generation of permeability (random
field) we use circulant embedding algorithm [7].

Due to the rapidly advancing area of computer science, methods based
on Monte Carlo sampling are of great interest. Such methods are suitable
for parallelization and can compute the expected value in reasonable time.
For realistic simulations usually a HPC implementation is need. Here we
investigate the possible benefits of generating permeability on GPUs and
study the reduction of time in overall computation of MLMC.

2 Model problem

In order to test the overall performance of MLMC in combination with CUDA
generated permeability field, we consider simple model problem in a unit
cube domain, steady state single phase flow in random porous media. This
problem, illustrates well the challenges in solving stochastic PDEs.

−∇ · [k(x, ω)∇p(x, ω)] = 0 for x ∈ D = (0, 1)d, ω ∈ Ω (1)

101

Subject to boundary conditions:

px=0 = 1

px=1 = 0

∂np = 0 on other boundaries,

(2)

with dimension d = {2, 3}, pressure p, scalar permeability k, and random
vector ω. The quantify of interest is the mean (expected value) of the total
flux through the unit cube:

Q(x, ω) :=

ˆ
x=0

k(x, ω)∂np(x, ω)dx (3)

Both the coefficient k(x, ω) and the solution p(x, ω) are subject to uncer-
tainty, characterized by the random vector ω in a properly defined space.

Solving this equation can be broken into three sub-problems: generating
permeability (random field), solving the deterministic problem and
reducing the variance with MLMC method. We briefly discuss each
of them.

Generating permeability field

Generating permeability fields is essential problem in solving the SPDE. Here
we consider a practical covariance proposed by [8]:

C(x, y) = σ2exp(−||x− y||p/λ), p = 2 (4)

Where || · ||p denotes the lp norm. in Rd.
which satisfies:

E[K(x, .)] = 0,

E[K(x, .), K(y, .)] = C(x− y) = C(y − x)

for x, y ∈ D and K(x, ω) = log(k(x, ω))

Several approaches has been developed of generating random permeabil-
ity fields applicable to flow simulations. Here we use an algorithm based on
forward and inverse Fourier transform over circulant covariance matrix to
generate permeability. Realization of such field is governed by two param-
eters: standard deviation σ and correlation length λ. More details can be
found in the papers [2] and [7].

102

Solving the deterministic problem

Literature provides different numerical schemes for solving PDEs. In [2],
an Multi-scale Finite element methods is used. Here for solving the elliptic
PDEs corresponding to each realization of permeability field, we use finite
volume method on a cell centered grid. This method is mass conservative.
More details can be found in [1, 3].

Variance reduction

We shortly recall the idea proposed in [1].
Let {Ml : l = 0 . . . L} ∈ N be increasing sequence of numbers called levels,
with corresponding quantities {QMl

}Ll=0, and s ≥ 2 be coarsening factor, such
that we have Ml = sMl−1, for l = 0 . . . L. Defining Yl = QMl

− QMl−1
and

setting Y0 = QM0 , we can use telescopic sum to write the following identitity
for the expected value E

E[QM] = E[QM0] +
L∑
l=1

E[QMl
−QMl−1

] =
L∑
l=0

E[Yl] (5)

The expectation on the finest level is equal to the expectation on the coarsest
level plus sum of corrections, i.e. differences in the expectations on each pair
of consecutive levels. The terms in (5) are approximated using standard MC
independent estimators, with Nl samples. For the mean square error we have:

e(Q̂ML
M,N)

2 = E[(Q̂ML
M,N − E[Q])2] =

L∑
l=0

N−1
l V [Yl] + (E[QM − E[Q])2 (6)

Our goal is to have:

e(Q̂ML
M,N)

2 =
L∑
l=0

N−1
l V [Yl] + (E[QM − E[Q])2 ≤ 2ε2 (7)

Denote vl = V [Yl], and let tl be the mean time computing difference Yl

once, and T =
∑L

l=0 nltl be the total time for the computation. Minimizing
T under the above constraint, with Lagrangian multipliers and turning it to
integer value gives us:

nl = �α
√
(vl/tl)� with Lagrangian multiplier α =

1

ε2

L∑
l=0

√
(vl/tl) (8)

103

To define the levels, the resolution of the discretization is used, such that
the number of square cells in D = 2 and cubic cells in D = 3 are exact power
of 2. Thus on the finer level we have 4 times more cells than on the coarser
level for D = 2, and 8 times more for D = 3. To approximate the random
field, we employ heuristic technique, witch combines each 4 cells in 2D into
one by combination of simple arithmetic, geometric and harmonic average.
For details we refer to [3].

(a) Permeability (b) Solution

Figure 1: Generated permeability and corresponding solution

3 Simulation results

The computational time used by the setup of the generation of 100 perme-
ability fields with σ = 2.0 and λ = 0.2 is shown on figure 2. Our underling
grid is in 2D with size, approximately 1.7 ∗ 107 . As it can be observed, the
speed up that is achieved using only CPU cores for computation at all of the
steps is significant up to around 8 cores. At this point it is approximately
up to 6.755 times faster than calculation on a single core. Using more than 8
cores efficiency gradually decreases and with 24 cores the speed up achieved
is approximately 15 times. The GPU generation is much faster: using single
GPU, generation time is comparable to 11 CPU cores, and on 2 GPUs - ap-
proximately 22 CPU cores. This is expected since permeability generation is
mainly a forward Fourier transform over a matrix, followed by multiplication
with random numbers for each element and then inverse Fourier transform.

Table 1 and 2 show the comparison of 3 level MLMC implementation
using only CPU versus implementation, that uses GPU for permeability gen-
eration. The presented results are averaged over 10 runs of the algorithm.

104

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
vg

. t
im

e
ov

er
 1

00
 s

ol
ve

s
(lo

g
sc

al
e)

Number of cores

Single Problem Performance

CPU Generation
1 GPU Generation
2 GPU Generation

Figure 2: Average times for generation single permeability field over 100
samples.

The fine grid is of size 210 ∗ 210 and permeability generation parameters are
σ = 1.5, λ = 0.1. Each problem is computed by own CPU core and all use
shared GPU, thus in a given moment of the execution 12 or 24 concurrent
calls to the GPUs may exist. This is more taxing situation for the GPU com-
pared to a distribution where a group of processes solves a single problem. In
table 1 one can observe that MLMC calculated on single GPU and 12 CPU
cores is faster than same algorithm using only CPU cores and the execution
of the generation step on the different levels is approximately 2 times faster
while the execution of the same MLMC implementation on single GPU and
24 CPU cores shows that the overall time is slower than execution only on
the same number of CPU cores. The performance is significantly improved
with introduction of a second GPU. The generation times are notably lower
than the case with a single GPU.

#GPU E[Q] Time[s] RMS tgenl0
[s] tgenl1

[s] tgenl2
[s]

0 1.041 1451.830 0.0028 0.430 0.433 0.518
1 1.039 1370.275 0.0029 0.266 0.163 0.229
2 1.040 1205.470 0.0027 0.042 0.060 0.093

Table 1: MLMC simulation, on 12 cores

105

#GPU E[Q] Time[s] RMS tgenl0
[s] tgenl1

[s] tgenl2
[s]

0 1.040 792.177 0.0029 0.440 0.537 0.530
1 1.039 836.920 0.0029 0.564 0.421 0.584
2 1.038 633.000 0.0029 0.0758 0.163 0.253

Table 2: MLMC simulation, on 24 cores

The implementation of the algorithm, used for that test is written in
C++. The method used for solving the PDE conjugate gradient precon-
ditioned with AMG if provided by DUNE library [9]. For implementation
of circulant embedding algorithm the fftw library is used for generation on
CPU, and cufft library provided by NVIDIA is used for generation on GPU.
The Multilevel Monte Carlo algorithm is implemented with pure MPI. All
tests are performed onHybriLIT-education and testing cluster, Dubna Rus-
sia, on a GPU node with two NVIDIA TESLA K80 GPUs and Intel Xeon
E5-2695 v2 processors.

4 Conclusions

Generating random filed using modern GPU accelerated computing is promis-
ing possibility, witch can decrease the computational time of the generation
step of the MLMC algorithm if the task is small enough to fit in the GPU
memory. When the task is larger, however, the execution time using GPU
can be larger than using only CPU cores. The idea of GPU acceleration
is fairly new in the area of scientific computing and there are not many li-
braries implemented, using GPU accelerated approach. Further more, HPC
systems with GPU enabled nodes are rather expensive and the number of
large scientific computing clusters with GPU capabilities is relatively small.
On the other hand, in the recent years, some large commercial clusters for
GPU computing were built, inspired by the block-chain and neural networks
trend. A further investigation on solving large scientific problems on such
clusters is an interesting study.

References

[1] Cliffe, K.A., Giles, M.B., Scheichl R., Teckentrup A.L.: Multilevel Monte
Carlo Methods and Applications to Elliptic PDEs with Random Co-
efficients. Computing and Visualization in Science 14(1) (pp. 3-15).
Springer(2011)

106

[2] Mohring, J., Milk, R., Ngo, A., Klein, O., Iliev, O., Ohlberger, M. and
Bastian, P.: Uncertainty Quantification for Porous Media Flow Using
Multilevel Monte Carlo. In International Conference on Large-Scale Sci-
entific Computing (pp. 145-152). Springer(2015)

[3] Iliev O., Mohring J., Shegunov N.: Renormalization Based MLMC
Method for Scalar Elliptic SPDE. In: International Conference on Large-
Scale Scientific Computing (pp. 145-152). Springer(2017)

[4] Blaheta, R., Béreš, M., Domesová, S.: A study of stochastic FEM method
for porous media flow problem. In: Bris, R., Dao, P. (eds.) Applied
Mathematics in Engineering and Reliability (pp. 281-289). 2016

[5] Lunati, I., Bernard, D., Giudici, M., Parravicini, G., Ponzini, G.: A
numerical comparison between two upscaling techniques: non-local in-
verse based scaling and simplified renormalization. Advances in Water
Resources 24 (pp. 913-929). Elsevier(2001)

[6] Renard, P., De Marsily, G.: Calculating equivalent permeability: a re-
view. Advances in Water Resources 20(5) (pp. 253–278). Elsevier(1997)

[7] Graham, G., Kuo F.Y., Nuyens, D., Scheichl, R., Sloan, I.H. Quasi-
Monte Carlo methods for elliptic PDEs with random coefficients and
applications. Journal of Computational Physics (230) (pp. 3668-3694).
Elsevier(2011)

[8] Hoeksema, R.J., Kitanidis, P.K.: Analysis of the spatial structure of
properties of selected aquifers. Water Resources Research 21(4) (pp.
563–572). (1985)

[9] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klofkorn, R., Ohlberger,
M., Sander, O.: A Generic Grid Interface for Parallel and Adaptive
Scientific Computing. Part I: Abstract Framework. Computing 82(2-3)
(pp. 103–119). (2008)

