
90

Modelling of CWEs on the CWE-287 example

Zhanar Sartabanova1, Vladimir Dimitrov2

1 K. Zhubanov ARSU, 34 A. Moldagulova Prospect, 030000 Aktobe, Kazakhstan
zhanara.85@mail.ru

2 University of Sofi a, 5 James Bourchier Blvd., 1164 Sofi a, Bulgaria
cht@fmi.uni-sofi a.bg

Abstract. Representing of software weaknesses in a knowledge base is an approach
to support software developers in their effort to write secure code. The leading idea
of this research is to represent the knowledge in CWEs as knowledge in OWL.

Keywords: software weaknesses, CWE, knowledge base, OWL.

1 Introduction

The software systems are part of our everyday life. The vulnerability risk of these
systems increases with the number of the users. The weaknesses can be exposed
as vulnerabilities during the system exploitation, but they are introduced during
the implementation phase. That is why it is so important to prevent software
weaknesses during the implementation.

The developer’s community established Mitre Corporation to create an
international list of software weaknesses – CWE.

CWE (Common Weakness Enumeration - a common list of weaknesses) [1]
is an international list of software weaknesses, which is freely available for public
use. The use of this list ensures the creation of enhanced software, taking into
account existing weaknesses.

Software weakness is any mistake made during the implementation,
confi guration, or design of the software. Software weakness is a defect,
malfunction that if left uncorrected may be exposed as a system vulnerability for
direct, or network attacks.

3 Construction of CWE-287 ontology

The common list of software weaknesses of CWE is a formal list of types of
weaknesses that is created to aim the software developers and practitioners in the
fi eld of cybersecurity. CWE-287 is one of these enumerated weaknesses.

The knowledge contained as a text in CWE-287 is represented as OWL
knowledge in Protégé.

Protégé is a free, open ontology editor and knowledge base building
framework.

��������	
�
���
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��
 �	����	����!
"��
#$
��%�

91

Protégé has an open, easily expandable architecture with support for modules
that extend functionality.

Protégé is supported by a large community of developers and scientists,
government and corporate users, who use it for knowledge - related tasks in such
diverse fi elds as Biomedicine, knowledge gathering and corporate modeling. [2]

The class hierarchy of CWEs is shown in Fig 1.

Fig. 1 . CWEs class hierarchy.

CWE entries are Bases, Classes, Compound, and Variations.
The most abstract type of weakness is the Class. It is independent of any

particular language or technology.
Base is a more specifi c type of weakness. It is still largely independent of the

resource or technology, but contains enough details to have specifi c detection and
prevention methods.

Variant is a weakness that is described at a very low level of details. It is
usually limited to a particular language or technology.

Compound is a signifi cant collection of several weaknesses, organized in a
chain or in a composite.

All other CWEEntries represented in Fig. 1 describe the CWE environment.
CWE entry “Views” represents a conceptual point of view to the CWEs. It

is a set of other CWEEntries. A view can contains Categories at its higher level,
but it is not obligatory.

Category is a CWE entry that contains a set of other entries that share a
common characteristic.

In our case CWE-1008 VIEW: Architectural Concepts is used. It contains the
following categories:

92

 Audit - (1009)
 Authenticate Actors - (1010)
 Authorize Actors - (1011)
 Cross Cutting - (1012)
 Encrypt Data - (1013)
 Identify Actors - (1014)
 Limit Access - (1015)
 Limit Exposure - (1016)
 Lock Computer - (1017)
 Manage User Sessions - (1018)
 Validate Inputs - (1019)
 Verify Message Integrity - (1020)
Fig. 2 represents this architectural hierarchy.

Fig. 2 . CWE-1008 VIEW: Architectural Concepts.

Categories contains Bases, Classes, Compound, and Variations.
The ontology represented as a graph is given in Fig. 3.
The weakness properties are:
1. Description (Description)
2. The design phase during which this weakness can occur (architecture

and design, implementation) (Modes Of Introduction)
3. Applicable platforms (based on programming languages): discusses

weaknesses that may occur in applications developed in the Java
programming language). (Applicable Platforms)

4. General effects (individual effects associated with weakness). Scope
identifi es the security scope of an application that is compromised, while

93

Impact describes the negative technical impact that occurs if an attacker
manages to exploit the vulnerability. Probability provides information
about how likely it is that a particular consequence is expected with
respect to other consequences in the list. For example, there may be
a high probability that a weakness will be used to achieve a certain
impact, but a low probability that it will be used to achieve another
impact. (Common Consequences)

Fig. 3 . OntoGraph representation of architectural concepts.

Fig. 4 . Object properties of CWE-1010.

94

1. The possibility of using
2. Illustrative example
3. Related vulnerabilities
4. Potential Mitigation
5. Detection method
Almost every CWE is associated with vulnerabilities and attacks.
A view of CWE-1010 object properties is given at Fig. 4.
Finally, CWE-287 is shown at Fig. 5 as graph in its environment.

Fig. 5 . CWE-287 graph.

5 Conclusion

Proposed knowledge representation aims software developers to write secure code
offering to them different views to the possible weaknesses in all development
phases.

References
1. CWE, Common Weaknesses Enumeration, http://cwe.mitre.org
2. Protégé, https://protegewiki.stanford.edu/wiki/Main_Page

