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Abstract. Accurate forecasting of Earth orientation parameters (EOP)
is important for improving the GPS location accuracy and navigation of
Earth satellites. EOP time series include periodic components of complex
structure. Singular Spectrum Analysis (SSA) is a nonparametric method
that is capable of decomposing and forecasting time series with sine-wave
components. In the paper, a unified approach to choosing parameters of
the SSA forecasting algorithm for EOP time series prediction is proposed.
EOP time series data published by IERS in Bulletin 14 C04 are used for
365-days prediction. The forecasts performed by the proposed techniques
are compared with predictions taken from available public sources.

Keywords: singular spectrum analysis · Earth orientation parameters
· time series · forecasting.

1 Introduction

Earth orientation parameters (EOP) are a collection of parameters that describe
different aspects of Earth rotation. They are changing in time and therefore
can be considered as time series. In many applications, such as geolocation or
high-precision satellite navigation, not only observed EOP values are needed,
but also their predictions for several days in the future. Namely, there are five
time series of interest: coordinates of the pole (x, y), length of day LOD, and
celestial pole offsets (dX, dY ). The coordinates (x, y) of the celestial ephemeris
pole determine the position of the celestial pole on the Earth’s surface. The pole
moves slowly because the axis of the Earth’s instantaneous rotation does not
stay still. Universal time (UT1) is the time of the Earth clock, which performs
one revolution in about 24 hours. The excess revolution time is called length of
day (LOD). It is vulnerable to wind and world ocean movements; thus it has
a complex structure and cannot be modeled precisely. Celestial pole position is
described by IAU (International Astronomical Union) precession and nutation
model IAU2000. The approximation accuracy is high; however, some nutations
are still not predictable. The observed corrections to the modeled celestial pole
coordinates in the celestial reference system are the offsets (dX, dY ).
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The Earth orientation parameters prediction comparison campaign (EOP
PCC, 2005–2008) organized for comparing the predictions of Earth orientation
parameters was an attempt to compare existing prediction techniques in the
same period of time for various lengths of forecasts: 10, 30, and 500 days. The
results of the campaign [7] suggest that smaller prediction errors can be achieved
by ensembling various models. A similar initiative was undertaken by the Inter-
national Earth Rotation and Reference Systems Service (IERS) in 2010–2015;
unfortunately, the project’s website and its archive are not available at the mo-
ment.

Various methods have been applied to the problem of EOP time series fore-
casting. Least squares interpolation by means of a harmonic model and autore-
gressive prediction (LS+AR) was applied to x, y and LOD time series in [10, 9].
A seasonal autoregressive model was proposed for the prediction of dX and dY
in [11].

Singular spectrum analysis (SSA) was used in several recent works for the
prediction of the polar motion (x, y). The applicability of the method to the
problem was demonstrated in [12] where the parameters were fixed to manu-
ally chosen values. The paper [13] proposes a more flexible approach with a
combination of SSA and the copula-based analysis.

In this paper, we introduce a technique for (almost) fully automated proce-
dure for the choice of parameters for each of the five EOP time series predictions,
which are performed on the base of historical data by means of singular spec-
trum analysis. The set of parameters consists of both parameters of SSA and
the length of time series to forecast. The used approach to the parameter choice
is commonly used in machine learning; therefore, it is particularly interesting to
note that the forecasting accuracy appears to be comparable with other public
forecasts, as it is demonstrated in this paper.

The structure of the paper is as follows. We start with a brief description of
SSA including the SSA forecasting and the approaches to the parameter choice
(Section 2). In Section 3, the used EOP data are presented. Section 4 contains a
description of the techniques of the automatic parameter choice. In Section 5, the
proposed approach is applied to the EOP data and the forecasting accuracy is
compared with several prediction results, which were found in the public domain.
Section 6 concludes the paper.

2 SSA methodology

SSA is a nonparametric method that is capable of decomposing a time series
into additive components: signal (trend plus periodic components) and noise [6].
SSA consists of two stages: decomposition and reconstruction.

Decomposition Let us consider a real-valued time series XN = (x1, . . . , xN ) of
length N . Let L (1 < L < N) be some integer (it is called “window length”),
and K = N − L + 1. On the decomposition stage, K embedding vectors are
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constructed in the following way:

Xi = (xi, . . . , xi+L−1)T ∈ RL, i = 1 . . . ,K. (1)

The trajectory matrix of the time series XN is defined as the Hankel matrix
obtained by column-wise stacking the embedding vectors:

X = [X1 : . . . : XK ] = (xij)
L,K
i,j=1 =


x1 x2 x3 . . . xK
x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2

...
...

...
. . .

...
xL xL+1 xL+2 . . . xN

 . (2)

Denote λ1, . . . , λL the eigenvalues of S = XXT, which are ordered in non-
decreasing order (λ1 ≥ . . . ≥ λL ≥ 0), and U1, . . . , UL an orthonormal ba-
sis of eigenvectors of the matrix S, corresponding to these eigenvalues. Let
d = max{i : λi > 0}. Denote Vi = XTUi/

√
λi, i = 1, . . . , d; then the singu-

lar value decomposition (SVD) of the matrix X can be written as

X = X1 + . . .+ Xd, Xi =
√
λiUiV

T
i . (3)

The collection (
√
λi, Ui, Vi) is called the i-th eigentriple of the SVD (3).

Reconstruction Basing on the decomposition (3), we perform a grouping pro-
cedure that divides the whole set of indices {1, . . . , d} into m non-intersecting
groups I1, . . . , Im. The grouped matrix XI that corresponds to a group
I = {i1, . . . , ip} is defined as follows:

XI = Xi1 + · · ·+ Xip .

In this notation, the grouped matrix decomposition of (3) has the form

X = XI1 + . . .+ XIm . (4)

The procedure of the choice of I1, . . . , Im is called eigentriples grouping.
Let XIk be a grouped matrix from (4). Then its transformation to a time

series is performed by averaging of matrix elements along diagonals i+j = const.
After diagonal averaging of XIk , the k-th reconstructed time series component

X̃(k) = (x̃
(k)
1 , . . . , x̃

(k)
N ) is obtained. Thus, the original series (x1, . . . , xN ) can be

denoted as a sum of m reconstructed series:

xn =

m∑
k=1

x̃(k)n , n = 1, . . . , N.

If XN = SN + RN and we are interested in the signal SN , while RN is noise, the
choice I1 = {1, . . . , r} for some r < d is appropriate. Then the signal estimate is

S̃N = (s̃1, . . . , s̃N ) = X̃(1).
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Forecasting Let us forecast the signal, which was estimated at the reconstruc-
tion stage of SSA with the window length L by grouping the r leading com-
ponents. The recurrent SSA forecasting is based on the r leading eigenvectors
U1, . . . , Ur and the reconstructed series S̃N .

Denote Ui the first L− 1 coordinates of Ui and πi the last coordinate of Ui,
ν2 =

∑
i π

2
i . Define R = (aL−1, . . . , a1)T as

R =
1

1− ν2
r∑

i=1

πiUi. (5)

The recurrent forecasting algorithm [6] is:

1. The predicted time series YN+P = (y1, . . . , yN+P ) is defined as

yi =


s̃i for i = 1, . . . , N,
L−1∑
j=1

ajyi−j for i = N + 1, . . . , N + P,
(6)

2. The values yN+1, . . . , yN+P are the result of P -step ahead forecasting.

Thus, the recurrent SSA forecasting is performed by applying the linear re-
currence relation with the coefficients {aj , j = 1, . . . , L− 1}.

Common consideration about the choice of the SSA parameters Cer-
tainly, the forecasting accuracy depends on the proper choice of parameters. SSA
can be considered as both a parametric and a non-parametric method. If the tra-
jectory matrix of a signal SN is rank-deficient, the signal is called a time series
of finite rank. Time series of finite rank (under some unrestrictive limitations)
can be exactly forecasted by SSA forecasting methods. For example, sine waves
and their sums have finite rank. For the SSA forecasting of periodic series, the
period should not be known in advance, due to the non-parametric nature of
SSA. The choice L ∼ N/2 is recommended for forecasting finite-rank signals in
presence of noise.

If the signal is an amplitude-modulated sine wave, it is not necessarily exactly
of finite rank. However, such a signal can be extracted with good accuracy by
an increase of the number r of the chosen components and/or a decrease of the
window length L.

In the interactive version of SSA, the identification of signal components is
performed by the analysis of the decomposition eigentriples. However, if the time
series is long enough, some automatic procedure for the choice of L and r can
be applied to minimize forecasting errors on chosen historical data; see e.g. [5,
Fragment 3.5.13–3.5.15]. Moreover, if the time series is long and has a changing
structure, the question of the choice of the optimal time series length to use for
forecasting arises. The problem of the choice of optimal time series length can
be solved automatically for a very long time series only.
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3 Data sources

As a source data we use IERS 14 C04 bulletin data published by IERS [2]. This
source contains daily data for each of the EOP time series beginning from 1962,
January 1, for x, y, LOD and from 1984, January 1, for dX, dY until the current
date with approximately 30 days delay. The plots of the time series are shown
in Figures 1–3.

IERS Bulletin A contains predictions of x, y, LOD time series for 365 days;
these data are published weekly. For comparison of the forecasts, we will also
use Pulkovo observatory daily predictions of all EOP time series for 365 days
[3]. Unfortunately, as of June 2019, the online archive with Pulkovo predictions
is not available. Further, in this work, we will use a backup copy of those files
that we possess at the moment.

(a) x (b) y

Fig. 1: Examples of celestial pole time series from 1995 to present.

Fig. 2: Example of LOD time series from 1995 to present.
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(a) dX (b) dY

Fig. 3: Examples of celestial pole offsets time series from 1995 to present.

4 Automatic choice of parameters

We will perform forecasting of the EOP time series x, y, LOD, dX, dY for one
year. For simplicity, we consider one year as consisting of 365 days.

As we mentioned, the SSA forecasting of a signal needs two parameters: the
window length L and the number of leading components r. The latter is related
to the signal structure, which is determined by the signal rank. The following
assertions are related: the signal structure is more complex, a larger rank is used
for its approximation, a larger number r of components in the SSA decomposition
should be chosen. We will search for an optimal r∗ value that minimizes forecast
mean squared error (MSE) for historical data. The considered boundaries are
r∗ ≤ 30 for the x, y, LOD time series, and r∗ ≤ 5 for the dX, dY time series since
they have a simpler structure. These boundaries were checked by the manual SSA
analysis of several sample data. The boundaries for L were chosen in a similar
manner.

We use the grid-search for the optimal value L∗ performing up to 10 steps
within the range. The chosen grid for L and r values is shown in Table 1.

Table 1: Search grid for L and r parameter values.
EOP L values r values

x, y 300, 500, 700, 900, 1100, 1300, 1500, 1700, 1900, 2100 [1, 30]
LOD 300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000 [1, 30]
dX, dY 250, 300, 350, 400, 450, 500 [1, 5]

In order to choose the parameters L∗, r∗ for SSA forecasting we will use the
time series cross-validation procedure as described in [5, Section 3.5.7].

For performing the cross-validation, we should fix the training period. Within
the training period, we consider moving intervals of length Q+1 years, where the
interval of Q years (365×Q days) is used for the signal estimation and one year
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(365 days) is taken for the signal forecasting and error calculation. The training
period length is equal to Q years plus the length W of the validation period;
the validation period consists of the time series values, which are used for the
calculation of the forecasting errors that are involved in the cross-validation pro-
cedure. For decreasing the computational costs, we consider M moving intervals
of length Q+1 years with equal lags; thereby, the lag size is approximately equal
to (W − 1)/(M − 1). For the SSA forecasting, the values L∗, r∗ are chosen from
the grid to minimize the forecast MSEs averaging by all the moving intervals.

In [9], the values Q = 5, 10, 15 years were considered. We compare
Q = 5, 10, 15, 20 years (if the time series lengths allow this choice) for the
validation period length equal to 5 years. The optimal parameters L∗, r∗ are
chosen automatically using the cross-validation procedure as described above
with M = 10 folds.

The implementation of the SSA algorithms in R language from the Rssa
package [8] was used. The average mean-squared errors of the forecasts are shown
in Table 2. Among the considered values, the value Q = 15 years results in
smaller forecast errors. We will use this setting later for performing forecasts on
the test period.

Table 2: Average MSE of 365 days EOP forecasts for different Q in the 2006–2010
years interval.

EOP 5 years 10 years 15 years 20 years

x 2.6 × 10−3 9.5 × 10−4 8.5 × 10−4 1.1 × 10−3

y 1.9 × 10−3 1.2 × 10−3 9.0 × 10−4 1.1 × 10−3

LOD 2.4 × 10−7 1.9 × 10−7 1.0 × 10−7 1.0 × 10−7

dX 2.01 × 10−8 1.93 × 10−8 1.88 × 10−8 —
dY 1.63 × 10−8 1.53 × 10−8 1.42 × 10−8 —

Table 3: Average MSE of 365 days EOP forecasts for different validation period
lengths in the 2006–2010 years interval.

EOP 3 years 5 years 7 years 10 years

x 1.0 × 10−3 8.5 × 10−4 8.3 × 10−4 9.1 × 10−4

y 9.2 × 10−4 9.0 × 10−4 8.8 × 10−4 8.8 × 10−4

LOD 1.1 × 10−7 1.0 × 10−7 1.0 × 10−7 9.8 × 10−8

dX 1.91 × 10−8 1.88 × 10−8 1.88 × 10−8 —
dY 1.42 × 10−8 1.42 × 10−8 1.39 × 10−8 —

We also need to choose the validation period length. To do this, Q is fixed
to that chosen on the previous step (15 years) and then the forecast errors are
compared using the cross-validation with M = 10 folds for different lengths of
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Table 4: Average MSE of 365 days EOP weekly forecasts from different sources
in the 2011–2015 years interval.

EOP SSA Pulkovo AM Bulletin A

x 7.2 × 10−4 8.6 × 10−4 7.5 × 10−4

y 6.1 × 10−4 7.6 × 10−4 8.5 × 10−4

LOD 9.1 × 10−8 1.0 × 10−7 —
dX 1.3 × 10−8 1.1 × 10−8 —
dY 1.6 × 10−8 2.2 × 10−8 —

the validation period: 3, 5, 7, and 10 years. The results of the experiments are
presented in Table 3. We also checked (not shown) that the optimal r∗ and
L∗ values fall in the same intervals for different forecasts along the considered
training period. This confirms that their choice is not random.

5 Forecasts on the test period

To perform forecasts for 365 days in the test period (2011–2015 years), we used
the results of investigations described in Section 4. The lengths of the training
and validation periods were chosen with the help of Tables 2 and 3, respectively.
For forecasts, the parameters L∗, r∗ were chosen automatically using the cross-
validation procedure as described in Section 4 (see Figure 4 for examples of
forecasts). The forecasting accuracy was compared with that of predictions from
two sources available in the public domain: Pulkovo observatory [3] and IERS
Bulletin A [1].

Since Bulletin A forecasts are published once a week, we generate forecasts
each week starting from the dates of publications for each of the EOP time series.
Then we calculate mean squared errors for all the forecasts and take the average
MSE in the test period. The results are shown in Table 4. In most cases, the
proposed method demonstrates a better average performance, except for the dX
time series predictions published by Pulkovo observatory. However, the average
MSEs of SSA and Pulkovo forecasts for dX are of the same order.

6 Conclusions

In this paper, we applied the SSA recurrent forecasting algorithm to predicting
the EOP time series. We stated the problem as a machine learning problem
and found a set of learning parameters, including the cross-validation hyper-
parameters. The proposed approach can be applied to each of the EOP time
series: x, y, LOD, dX and dY in the same manner.

It appears that SSA is well suitable for the prediction of the EOP time series.
Since the computational cost of SSA is considerably diminished in the recent im-
plementation [8, 5], the proposed approach is computationally feasible for daily
EOP time series predictions. The numerical comparison in the test period since



EOP Time Series Prediction Using Singular Spectrum Analysis 9

(a) x time series forecast
(L∗ = 700, r∗ = 10).

(b) y time series forecast
(L∗ = 500, r∗ = 10).

(c) LOD time series forecast
(L∗ = 900, r∗ = 19).

(d) dX time series forecast
(L∗ = 350, r∗ = 4).

(e) dY time series forecast
(L∗ = 300, r∗ = 5).

Fig. 4: EOP time series forecasts for 365 days starting from January 1 2015 from
different sources.
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January 1, 2011, till December 31, 2015, shows that SSA together with the
proposed method of automatization of the parameter choice provides forecast-
ing accuracy, which is comparable to those that are published by international
services; in many cases, the proposed method’s errors are smaller on average.

The resulting forecasts and corresponding parameter values are published as
a web-application and can be downloaded via http://eoppredict.ru. The interface
allows one to compare predictions from different sources on historical data.

In future work, the prediction accuracy can be improved by a more sophisti-
cated grouping of the SSA decomposition components using specific time series
properties, in an automated way. Also, the multivariate versions of SSA [4] can
be applied to improve accuracy.
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