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Abstract. Rapid intensification (RI) is when a sudden and considerable
increase in tropical cyclone (TC) intensity occurs. Accurate early predic-
tion of RI from TC images is important for preventing the possible dam-
ages caused by TCs. The main difficulty of RI prediction is to extract
important features that are effective for RI prediction, which is chal-
lenging even for experienced meteorologists. Inspired by the success of
deep learning models for automatic feature extraction and strong predic-
tive performance, we initiate this study that experiments with multiple
domain-knowledge guided deep learning models. The goal is to evaluate
the potential use of these models for RI prediction. Furthermore, we ex-
amine the internal states of the models to obtain visualizable insights for
RI prediction. Our model is efficient in training while achieving state-
of-the-art performance on the benchmark dataset. The results showcase
the success of adapting deep learning to solve complex meteorology prob-
lems.
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1 Introduction

Tropical cyclone (TC) is one of the most devastating weather systems on Earth,
characterized by intense and rapidly rotating winds around a low-pressure center.
In order to reduce and respond to the damages caused by TCs, many efforts have
been devoted during the past half-century to improving the forecast of TC track,
intensity, and the associated rainfall and flooding. Although TC track forecast
has achieved significant improvement during the past few decades, prediction of
TC rapid intensification (RI) remains challenging, which affects the subsequent
production of TC structure and rainfall forecast [3]. TC intensity is defined as the
maximum sustained wind in the TC inner-core region, and rapid intensification
(RI) is defined as a TC experiencing an intensity increase surpassing a threshold
(25 - 35 knots) per 24hr period.
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Accurately predicting the onset of RI is particularly crucial because reacting
to an off-shore RI event before the TC landfall requires sufficient time and de-
layed reaction had caused some of the most catastrophic TC disasters. External
environmental forcing [5, 6], TC internal dynamical [12], and thermo-dynamical
processes [11] simultaneously control its onset. Thus, a successful RI prediction
scheme has to accurately depict both environmental conditions (in which a TC is
embedded) and vortex-scale features such as the distribution of precipitation or
inner-core TC structure. The goal of this paper is to experiment with the plausi-
bility of deep learning on the RI prediction task from only satellite images since
the images are known to be feature-rich but were challenging for meteorologist
and forecaster to extract in the past.

2 Related Work

Statistical Hurricane Intensification Predictive Scheme (SHIPS) project has de-
veloped a series of statistical models for probabilistic prediction of RI [6, 15,
16]. The SHIPS RI index (SHIPS-RII, [6]) predicted the probability of a TC
intensifying at least 25, 30, and 35 kt per 24hr. This scheme uses simple lin-
ear discriminant analysis to determine the RI probability based on a relatively
small number (< 10) of predictors describing mainly the environmental factors
and some limited aspects of TC internal structure observed by meteorological
satellite. Candidate predictors (N ∼ 20) for SHIPS-RII [6] were subjectively
determined by human intelligence, and the final predictors used for linear dis-
criminant analysis were basin-dependent.

A subsequent work of [15] used Bayesian inference (SHIPS-Bayesian) and lo-
gistic regression (SHIPS-logistic) to predict RI probability. The authors showed
that both SHIPS-Bayesian and SHIPS-logistic exhibit forecast skill that gen-
erally exceeds the skill of SHIPS-RII and blending these three models further
improved the skill. Another study [16] integrated additional 4 - 6 predictors
derived from satellite passive microwave (PMW) observations into the SHIPS-
logistic model and a relative skill improvement from 53.5 % to 103.0 % in Atlantic
compared to the original model.

In conclusion, proper inclusion of TC convective information into the sta-
tistical model is critical to improving the performance. However, determining
new predictors that are capable of adequately representing asymmetric convec-
tive features is challenging, which is where the feature extraction power of deep
learning shines. Convolutional neural networks (CNN), a variant of deep neural
networks useful for analyzing images, have been successfully applied to estimat-
ing TC intensity [1, 2, 14] and predicting TC formation [9].

3 Background

3.1 Recurrent neural network

Recurrent neural network (RNN) specializes in dealing with sequentially depen-
dent features. The network maintains a memory state to encode past informa-
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tion as a reference for the current time step. The output for each time step
depends on the corresponding input and the memory state. Long short-term
memory (LSTM) cells is a variant of RNN cells where gates within the cell fa-
cilitate back-propagation and diminish the effect of gradient vanishing for long
sequences. LSTM is widely used in multiple deep learning domains and serves
as a crucial component in state-of-the-art models for multiple tasks.

Convolutional LSTM (ConvLSTM)[19] replaces all the fully-connected oper-
ations in a normal LSTM cell with convolutional operations, thereby preserving
spatial information and allows reduction of parameters with efficient convolu-
tion kernels replacing dense weights. It has found success in multiple computer
vision tasks related to video inputs such as gesture recognition in videos. [7] suc-
cessfully applied ConvLSTM in predicting TC track on augmented data, which
proves the efficacy of ConvLSTM on cyclone datasets.

Previous studies showed that replacing the convolutions in gates of Con-
vLSTM with fully-connected operations enables better performance in gesture
recognition tasks since previous layers have already captured spatial informa-
tion [20]. Our task coincidentally shares similar input features and output val-
ues, that is, given a short video (consecutive frames of satellite images) predict
the probability of labels (occurrence of RI). Replacing convolution operation for
gates with fully-connected operation allows reduction of parameters, lowering
the potential of overfitting.

3.2 Attention

The attention mechanism is a general framework for reweighting input features
by importance. Such a mechanism is successful in various machine learning do-
mains including computer vision. Attention mechanism also enables explainabil-
ity of the model, providing an importance heatmap that is more intuitive to
understand compared to hidden feature maps.

Self-attention [17] generates attention with respect to the input itself. Since
our input feature is two dimensional, the attention mask is generated via con-
volution operations without bias and activation before passing into the sigmoid
function to output probability distribution. Then the mask is applied to the
input feature via Hadamard product.

Sequence attention [8] is designed for reducing the load of memory states of
RNNs in the decoding process. Specifically, during the decoding process in the
recurrent layer, consider replacing the input at time t Xt with X̂t

X̂t = [Xt,

t−1∑
τ=1

atτXτ ], atτ = S(Xt, Xτ )

where S : X 2 → R is the attention function which calculates the similarity atτ
between Xt and Xτ . The original input Xt is then concatenated with a convex
combination of previous time frames to form the modified input X̂t, which now
contains information that spans across the entire elapsed period. The decoded
output now can obtain information from the past not only from the memory
state but also X̂t.
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4 Proposed Method

4.1 Performance evaluation

RI forecasting is a time series, image-to-probability prediction task. Given a
series of cyclone satellite images, the model outputs the probability of RI oc-
currence for each time frame. Threshold of 0.5 is used to translate prediction
probability into binary output. The following metrics evaluate the performance
of the model:

– Brier score (BS) is conventionally used to evaluate the performance of proba-
bilistic predictions in meteorology. Brier skill score (BSS) is the improvement
measurement of a target forecast φ with respect to a reference climatology
forecast ψ.

BS(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2, BSS(φ, x, y)ψ =
BS(y, ψ(x))− BS(y, φ(x))

BS(y, ψ(x))

where x =∈ Xn, y =∈ {0, 1}n are the labels and ŷ ∈ [0, 1]n are the predic-
tions. Our reference climatology forecast achieves Brier score of 0.3.

– Heidke skill score (HSS) is another widely used score for evaluating relative
performances of binary classification tasks in meteorology. Given labels y ∈
{0, 1}n and predictions ŷ ∈ [0, 1]n, let TP, TN, FP, and FN denote the
number of true positives, true negatives, false positives, and false negatives,
respectively.

SF =
TP + TN

n
· TP + FN

n
+

FP + TN

n
· FP + FN

n
, HSS =

ACC− SF

1− SF

where standard forecast (SF) is the probability of correct by chance and
accuracy (ACC) is simply TP+TN

n .

4.2 Data

The dataset of TC satellite images arranged by [1, 2] is used for our experiment.
Each observation event is associated with the intensity change of the following
24hr as the label to define RI occurence. We follow [1]’s preprocessing and aug-
mentation techniques, selecting only the infrared and passive-microwave channels
which are channel-wise normalized, randomly rotating each frame in each TC
series, and cropping the central 64x64 portion. We split the data into training
(1097 TCs, 43404 events) and validation (188 TCs, 7654 events) sets.

4.3 Model architecture

The model is designed to be extremely light-weight (see fig 1) to prevent overfit-
ting on the small dataset. It is mainly inspired by the Advanced Dvorak Tech-
nique (ADT) [13] which is the most widely used method for TC intensity pre-
diction. We will explain the connection between the design choices and ADT in
the following sections.
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CNN backbone The CNN backbone serve as the feature extractor for extract-
ing rich image features from multiple channels of satellite images. We experi-
mented with popular CNN backbone architectures such as multiple variations of
the ResNet family[4, 18]. However, we opt for a vanilla CNN structure after much
experiment. We are unable to utilize large models pretrained on other natural
image datasets and the TC dataset size is insufficient to train a complex model
from scratch. We discovered that a lightweight vanilla CNN not only is signifi-
cantly faster to train but also performs no worse than the complex counterparts.
The CNN backbone is end-to-end trained with the task but it is possible to ini-
tialize the weights by training an autoencoder on TC images in an unsupervised
manner.

Recurrent layer Spatio-temporal data naturally calls for ConvLSTM-like [19]
structure to facilitate information flow between time steps while maintaining
locality of spatial information. We selected the dense-gated ConvLSTM cell [20]
due to its ability to decouple temporal and spatial feature, which significantly
reduces the number of parameters.

Self-attention The main procedure in an ADT [13] analysis for TC on oceans
is performing scene analysis. Specifically, the cloud patterns are classified into
one of many pattern types, where each pattern type is associated with its unique
analysis sub-procedure. Success of applying the pattern classification rules heav-
ily rely on accurately locating the storm eye, since TC features such as the curved
band are defined relative to the eye.

The purpose of incorporating self-attention is to simulate scene analysis
where important regions on the feature map associated with the particular scene
are emphasized. Self-attention generates the attention map based on the input
feature map itself and is applied before the recurrent layer so the attention is
determined solely on spatial information such as the location of the storm eye.

Sequence attention ADT analysis outputs several T-numbers (T#) which
can be combined and calculated to estimate the current TC intensity as well as
forecast 24h intensity. The raw T# represents the estimated purely from ana-
lyzing the satellite image the final T# represents estimate that is time-averaged
over 6h (originally 12h). The CI# is based on final T# subject to some rule
constraint, which mainly serves as the current intensity estimation and the FI#
is simply an extrapolation from past time steps to serve as intensity forecast.

In order to mimic the behavior of time-averaging with soft supervision unlike
hard coded rules when deriving CI# from final T#, we added the sequence
attention module to the recurrent layer. For each time step, we calculate the
similarity between the current frame and past time frames to serve as weights
to linearly combine past time frames, which is then concatenated to the current
time frame. Here, the number of past frames to look back is a hyper-parameter
where longer is not necessarily better due to inherent chaos in TCs. Thus, the
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input to the recurrent layer contains the current state of the TC as well as the
concentrated history which can help stabilize predictions. We chose Luong-style
attention for convenience but expect other attention mechanisms to work as well.

ConvLSTM
+

Sequence 
Attention

Cross 
Entropy loss

⋮

⋮

Self-attention

𝑊 ×𝐻 × 2 𝑊

2
×
𝐻

2
× 16 × 𝑇

𝑊

4
×
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4
× 32 × 𝑇

𝑊
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𝑊
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𝑊
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×
𝐻

4
× 𝑇′ 128 × 𝑇′ 2 × 𝑇′

Fully connected
layer

Convolution Linear convolution
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Sigmoid
function

Hadamard
product

CNN encoder block Recurrent block Dense block

Fig. 1. Model architecture.

5 Experiment and Analysis

For the experiment, TC satellite image series of length T are first passed through
the CNN backbone for feature extraction, then passed into the recurrent layer for
combining temporal features from different time frames. Since when calculating
sequence attention the length of depended history is fixed, the first T − T ′ time
steps are dropped in the recurrent layer output due to insufficient information.
Finally, the three-dimensional features are compressed into T ′ output of logits
for RI corresponding to each time step in the series.

We train each model for 500 epochs and use ADAM optimizer to mini-
mize the class-weighted cross entropy (pos : neg = 20 : 1) due to the largely
unbalanced number of RI events in an entire TC series. Learning rate of 5 ·
10−4 is selected from [10−3, 10−4, 5 · 10−4, 10−5, 10−6] with no decay scheduling.
The weights except biases are L2-regularized with factor of 10−5, selected from
[10−3, 10−4, 10−5, 10−6]. All dense layers have dropout rate of 0.9, which do not
interfere with batch normalization as they are all placed in the back. We conduct
ablation study on the attention techniques to clarify their function.

5.1 Self-attention

Fig 2 and 3 show that the model focuses on the storm eye and some portion
of the outer curved band, which matches closely with how ADT would analyze
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the TC. We observed that self-attention effectively smooths predictions near the
actual RI frames. Fig 4 plots the distribution of the span of maximum peak of
TC series, The span is defined as the length of frames neighboring the peak,
where frames prior to and after the peak decreases in magnitude monotonically.
Sharp peaks implies that the predicted probability of RI occurrence perturbs
frequently. When RI occurs, the cloud formation generally changes dramatically
in short periods of time. Self-attention serves as an importance filter to amplify
key regions while muting noises to help the model predict similar intensity for
neighboring time frames near high RI probaility regions.

5.2 Sequence attention

Recall the goal of sequence attention is to stabilize the predictions over time,
much like how time averaging is used in ADT, which is ideal as RI usually occurs
in continuous time span due to the atmosphere being a continuously dynamic
system.

We observed that predictions with sequence attention is smoother throughout
the entire TC series. In fact, it is so smooth that the smoothness causes the model
prediction to be slightly delayed compared to the actual event. Fig 5 plots the
distribution of time difference between the predicted RI probability peak and
the actual intensity difference peak. We expect that a larger intensity difference
is reflected as higher RI probability predicted by the model. A positive time
difference implies prediction delay, which is worse than a negative time difference
which implies early prediction. According to the graph, sequence attention causes
the peak to delay more than the vanilla model. Since the input to the recurrent
layer consists of half of current time frame and half of concentrated history, the
dependence on the current frame is essentially halved. This causes hints of RI
occurrence observed in the current time frame to be not as dominating, which
is a trade-off between model stability and sensitivity.

Sequence attention also causes more underestimation of RI probability, align-
ing with the delayed-peak observation. With the current input combined with
attended history, in some sense, the intensity is averaged over the all the past
time frames and dilutes the intensity and cause underestimation, which is not
all bad since consistent and smoother results is desired. Due to the unbalanced
nature of the dataset, where the number of negative samples dominates, it is
particularly likely to train a model that underestimates. In conclusion, sequence
attention acts as a double-edged sword, where the introduced stability may or
may not be beneficial depending on the context. More careful fine-tuning of how
much history the sequence attention depends on is essential to find the balancing
point.

5.3 Performance

According to table 1, our best performing model for BSS is the self-attention
variant (43 % improvement), and the best for HSS is the combined variant
(11 % improvement). Interestingly direct fusion of self-attention and sequence
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attention does not necessarily yield better results, which yields potential for
better incorporation of the two attention mechanisms. The reliability diagram
(fig 6) is also plotted to show the correlation between predicted probability and
true probability. The larger slope is caused by class-weighting of losses, as the
model learns to prefer overestimating than underestimating, which shows similar
trends with results in previous works [10, 16].

Table 1. Skill scores for performance evaluation. Performance is evaluated on the
validation set and the two skill scores correspond to the same model.

Model Brier skill score Heidke skill score

Blended SVM+RF+MLP [10] 0.35 0.3
Our model (no attention) 0.451 0.329
Our model (self-attention) 0.502 0.324
Our model (sequence attention) 0.435 0.301
Our model (both attentions) 0.455 0.334

Fig. 2. Satellite image Fig. 3. Attention mask

Fig. 4. Peak sharpness Fig. 5. Peak delay Fig. 6. Reliability diagram
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6 Conclusion

We proposed a deep learning model which achieves state-of-the-art performance
on the cyclone rapid intensification task relying solely on satellite images, which
to the best of our knowledge is the first. In comparison, previous works for RI
prediction rely on predictors that requires expensive computation resources and
human manual efforts. We thoroughly experimented with different model designs
with attention mechanisms inspired by existing succesful TC intensity prediction
domain knowledge. Our model achieves 40% performance improvement on BSS
while slightly improving in HSS. Furthermore, we explain the predictions by
visualizing attention heatmaps and yield insight regarding the influence of each
model design on the prediction tendency.

For future works, we wish to explore improved designs of attention mech-
anisms to capture intrinsic properties among time frames tailored for the RI
prediction task. The stability that sequential attention provides demonstrates
the potential of reducing false positives with proper modification to the vanilla
mechanism. We also wish to explore the possibility of augmenting training data
with generative adversarial networks to improve robustness.
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