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Abstract. In the southern countries, timely and accurate land cover
mapping is crucial for food security monitoring. Nowadays, Earth Ob-
servation missions like Sentinel-1 (S1) and Sentinel-2 (S2) provide radar
and optical imagery respectively, which can be organized in dense time
series and leveraged for a wide range of applications such as land cover
mapping. In this paper, a deep learning (DL) architecture is designed to
combine S1 and S2 time series at object level with the aim to deal with
heterogeneous agricultural landscape land cover mapping located in the
southern part of the Senegalese groundnut basin. Both quantitative and
qualitative results obtained demonstrate the significance of the proposal.
In addition, we explore how the parameters learnt by the DL model can
supply insights towards the explanation of the classifier decision.

1 Introduction

Nowadays, huge amount of heterogeneous Earth Observation (EO) data are
made publicly available, and they represent a valuable source of information
that can be easily leveraged for a wide range of land monitoring applications:
agricultural management [14], ecology [13] or urban planning [11]. Among EO
initiatives, the Copernicus programme developed by the European Space Agency
provides radar and optical imagery through its Sentinel-1 (S1) and Sentinel-2
(S2) missions, respectively, with fine spatial resolution (up to 10-m) and high
revisit time (around 5 days). These data, usually organized in Satellite Image
Time Series (SITS), represent a practical tool to monitor human and physical
environment through the production of precise and timely Land Use/Land Cover
(LULC) maps. As regards LULC mapping, both S1 [19] (radar) and S2 [13] (opti-
cal) SITS have been employed. While their combination have shown to perform
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better than using the single sensors in different contexts (e.g., change detec-
tion [6] and urban mapping [9]), how to profitably exploit multi-source data for
LULC mapping remains a challenging task. In LULC-related contexts, most ex-
isting approaches rely on data fusion techniques [18] or on leveraging standard
machine learning techniques (i.e. Random Forest, Support Vector Machine) on
a simple concatenation of radar and optical input data [5]. In both cases, pro-
posed methodologies threat the different data sources as completely independent
from each other, also ignoring spatial and temporal dependencies that may be
present in the data. Recently, deep learning (DL) approaches have become per-
vasive in several domains, including remote sensing [10]. A main attractive of
DL models is that they are able to learn features optimized for a specific task
(i.e. image classification), by simultaneously training the associated classifier.
Moreover, they can be exploited to leverage temporal dependencies available in
SITS data. Deep learning techniques tailored for multi-source (i.e. radar and
optical) satellite data have been proposed to solve tasks such as optical image
simulation [7] or change detection [15]. However, only marginal advances have
been made in multi-source LULC mapping tasks [14]. Our hypothesis is that
the complementarity carried out by radar and optical SITS can be effectively
leveraged by DL based models compared to standard remote sensing techniques.
In this context, we propose a deep learning architecture, named OB2SRNN
(Object-Based two-Stream RNN), to manage multi-temporal (SITS) and multi-
source (radar and optical) data at object-level to deal with Land Cover map-
ping/classification with an application to a West African agricultural landscape.
The proposed DL architecture involves the use of an attention-based RNN tech-
nique to effectively take into account time dependencies.

2 Data and Preprocessing

The analysis was carried out on the southern part of the Senegalese groundnut
basin, one of the main agricultural regions of the country dominated by a small-
holder agriculture in an heterogeneous landscape including isolated trees within
plots. It covers a total area of 441 km2 (21km×21km).
Sentinel-1 Data The radar dataset consists of 16 Sentinel-1 (S1) SITS ac-
quired between May and October 2018 in C-band Interferometric Wide Swath
(IW) mode with dual polarization (VV+VH). All images, as retrieved at level-
1C Ground Range Detected (GRD) from the PEPS platform 5, are radiometri-
cally calibrated in backscatter values (decibels, dB) using parameters included
in metadata files and then coregistered with the Sentinel-2 (see below) grid and
orthorectified at the same 10-m spatial resolution. Finally, a multitemporal fil-
tering was applied removing artefacts resulting from speckle effect.
Sentinel-2 Data The optical data consists of a 19 Sentinel-2 (S2) SITS acquired
between May and October 2018. All images are retrieved from the THEIA pole
platform 6 and calibrated from digital number to level-2A top of canopy (TOC)

5 https://peps.cnes.fr/
6 http://theia.cnes.fr
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reflectance. Only 10-m spatial resolution bands were considered (i.e. Blue, Green,
Red and Near Infrared spectrum). Since the main issue with optical data, espe-
cially in tropical areas, is cloudiness, a preprocessing was performed over each
band to replace cloudy observations as detected by the supplied cloud masks
through a multi-temporal gapfilling [11]. Cloudy pixel values were linearly inter-
polated using the previous and following cloud-free dates. Then, the Normalized
Difference Vegetation Index (NDVI) was calculated for each date. NDVI was
chosen as supplementary optical descriptor since it describes the photosynthetic
activity and the metabolism intensity of the vegetation.
Field data The field database was built from GPS records collected during the
2018 agricultural campaign and the visual interpretation of a very high spatial
resolution (3-m) PlanetScope image acquired in October 4, 2018. The ground
truth database includes 734 polygons distributed over 9 land cover classes (Ta-
ble 1). The SITS analysis was conducted at object-level. Working with objects
instead of pixels has two main advantages : i) objects represent more repre-
sentative spectral information and potentially feature-rich pieces of information
and ii) object based approaches facilitate data analysis scale-up since, for the
same area, the number of objects is usually smaller than the number of pixels
by several order of magnitude. To analyse SITS data at object-level, a segmen-
tation was performed on the PlanetScope image which has been coregistered
with the S2 time series. The PlanetScope image was segmented via the Large
Scale Generic Region Merging (LSGRM) Orfeo Toolbox remote module obtain-
ing 116 937 segments.

The obtained segments were spa-
tially intersected with the ground
truth data to provide radiomet-
rically homogeneous class samples
and finally it resulted in new compa-
rable size 3 084 labeled objects. Fi-
nally, the mean value of the pixels
corresponding to each segment was
calculated over all the timestamps
in the time series, resulting in 127
variables per segment (19× 5 for S2
+ 16× 2 for S1).

Table 1: Field database characteristics

Class Label Polygons Segments

0 Bushes 50 100
1 Fallows 69 322
2 Ponds 33 59
3 Banks and bare soils 35 132
4 Villages 21 767
5 Wet areas 22 156
6 Valley 22 56
7 Cereals 260 816
8 Legumes 222 676

Total 734 3084

3 Object based Multi-Source RNN Land Cover
Classification

Figure 1 depicts the proposed OB2SRNN deep learning architecture for the
multi-source SITS classification process. The architecture involves two twin streams:
one for the radar and one for the optical time series. Each stream of theOB2SRNN
architecture can be roughly decomposed in three parts: i) data preprocessing
and enrichment ii) time series analysis and iii) multi-temporal combination to
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Fig. 1: OB2SRNN takes as input two time series (radar and optical SITS)
and provides as output the land cover classification. It is composed by two twin
streams. Each stream firstly processes the SITS by means of fully connected
layers and successively an RNN with attention is employed. Finally, the set of
features extracted is combined to provide the final decision.

generate per-source features. Finally, the radar (left stream) and optical (right
stream) information are combined together. The features extracted from each
stream (rectangles in top) are concatenated and directly leveraged to produce
the final land cover classification. Such learned features named featrad (resp.
featopt) indicate the output of the radar (resp. optical) stream. The first part
of each stream is represented by two fully connected layers (FC1 and FC2) that
take as input one time stamp of the object time series (radar or optical) and
combine the input data. Such stage allows the architecture to extract an useful
input combination for the classification task enriching the original data repre-
sentation. A ReLU non-linearity activation function [17] is associated to each
fully connected layer. The second part is constituted by Gated Recurrent Units
(GRUs) [3], a kind of Recurrent Neural Networks (RNNs) which have demon-
strated its effectiveness in the field of remote sensing [1,16] among others. Unlike
standard feed forward networks (i.e. CNNs), RNNs explicitly manage temporal
data dependencies since the output of the neuron at time t− 1 is used, together
with the next input, to feed the neuron itself at time t. Furthermore, this ap-
proach explicitly models the temporal correlation presents in the object time
series and is able to focus its analysis on the useful portion of the time series
(i.e., discarding less useful information). The third and last stage consists of a
neural attention model [2] on top of the outputs produced by the GRUs. Atten-
tion mechanisms are widely used in automatic signal processing [2] (1D signal or
language) as they allow to join together the information extracted by the RNN
model at different timestamps via a convex combination of the input sources.
The attention formulation used is the same as in [1]. The purpose of this proce-
dure is to learn a set of weights that allows the contribution of each timestamp
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to be weighted through a linear combination. The SoftMax function is used to
normalize weights λ so that their sum is equal to 1. In our context, two different
sets of attention weights are obtained: λrad and λopt. The former refers to the
attention over the radar SITS while the latter represents the attention over the
optical ones. The output of each stream is a feature vector encoding the tem-
poral information related to input sources. Once each stream has processed the
corresponding time series information, the concatenation of the extracted radar
and optical features is used to perform the classification. To strengthen the com-
plementarity as well as the discriminative power of the learned features for each
stream, we use an adaptation of the technique proposed in [8], by introducing
an auxiliary classifier for each set of learned features (featrad and featopt). The
goal of this extra classifiers is to stress the fact that the learned features need to
be discriminative alone (i.e., independently from each other). Then, the learning
process involves the optimization of three classifiers at the same time: one spe-
cific to featrad, one related to featopt and one that considers the concatenation
[featrad, featopt]. The associated cost function is :

Ltotal = 0.5 ∗ L1(featrad) + 0.5 ∗ L2(featopt) + Lfus([featrad, featopt]) (1)

where Li(feat) is the loss function (in our case the categorical Cross-Entropy)
associated to the classifier fed with the features feat. The contribution of each
auxiliary classifier was empirically weighted by a weight of 0.5 to enforce the
discriminative power of the per-source learned features. The final land cover
class is derived combining the three SoftMax classifiers with the same weight
schema employed in the learning process. In addition, dropout with a rate equal
to 0.4 was employed for the GRU unit and between the two Fully Connected
layers. The model is learned end-to-end from scratch.

4 Experimental Evaluation

In this section, we present and discuss the results obtained on the study site.
To assess the quality of OB2SRNN , we compare its performance with those
of Random Forest (RF) classifier. The competing method, namely RF (S1, S2),
consists in a Random Forest classifier trained on the concatenation of S1 and S2
SITS. In addition, we provide an inspection of the attention parameters learnt
by OB2SRNN , to investigate how such side information can be exploited to get
insights from the data itself.

Experimental Settings To learn OB2SRNN parameters the Adam opti-
mizer [12] was used with a learning rate equal to 1× 10−4. The training process
was conducted over 1000 epochs with a batch size equal to 32. The number of
hidden units for the RNN module was fixed to 512 (resp. 256) for the optical
(resp. radar) branch while, 16 and 32 (resp. 32 and 64) neurons were employed
for the first and the second Fully Connected layers for S1 (resp. S2) stream. The
RF (S1, S2) model was optimized using a grid search procedure on the maximum
depth of each tree (in the range {20,40,60,80,100}) and the number of trees in
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the forest (in the set {100, 200, 300,400,500}). The dataset was split into train-
ing, validation and test set with an object proportion of 50%, 20% and 30%
respectively. The values were normalized, per band (resp. indices) considering
the time series, in the interval [0, 1]. The assessment of the classification perfor-
mances was done considering global precision (Accuracy), F-Measure and Kappa
metrics. Training set was used to learn the OB2SRNN and RF (S1, S2) models.
For each method, the model achieving the best accuracy on the validation set
was subsequently employed to classify the test set. Since the performances of
the models may vary depending on the split of the data due to simpler or more
complex samples involved in the training/test set, all metrics were averaged over
ten random splits following the strategy previously reported.

Comparative analysis Table 2 reports on the average results of the evalu-
ation metrics for the two competing methods. Considering the average behav-
ior, OB2SRNN clearly outperforms RF (S1, S2), with a gain of more than 5
points on each metric. Table 3 reports the per-class F-Measure obtained by each
method. The OB2SRNN approach achieves the best performance on 7 classes
over 8. This behavior is particularly accentuated for 0–Bushes, 1–Fallows and
Uncultivated areas, 2–Ponds, 5–Wet areas, 7–Cereals and 8–Legumes classes. The
biggest gap between the two methods concerns the 2–Ponds class, corresponding
to a gain of more than 30 points. Given that the Ponds class is one of the less
represented in terms of examples in the ground truth, the fact that Random
Forest is known to be sensible to class imbalance [10] (e.g. giving more chance
to more representative classes like 5–Wet areas) can be a possible explanation
behind its poor behavior on such land cover. On the other hand, this result
demonstrates the ability of OB2SRNN to effectively leverage on the different
information sources, thus being able to deal with the land cover classification
task even in a class imbalance scenario. It should be noted that the imbalance
in the data also affects the performance on the over represented classes, i.e.,
OB2SRNN largely outperforms RF (S1, S2) also on 5–Wet areas, i.e., a class
closely related to 2–Ponds but more represented in the input data. Concerning
agricultural classes (i.e., 7–Cereals and 8–Legumes) the RNN based approach
achieves better scores due to the fact that it is especially tailored to leverage
temporal dependencies. This behavior particularly suits our context, where crop
classes follow specific temporal patterns due to cropping practices, and depend-
ing on the the timing of the different phenological stages in which the plants are
sowing, grow, reach maturation and are successively harvested. Regarding other
classes, the gap between the performances of two methods are less significant,
however, the RF (S1, S2) method achieves a slightly better but still comparable
score on class 3–Banks and bare soils.

Table 2: F-Measure, Kappa and Accuracy considering the competing methods.
F-Measure Kappa Accuracy

RF (S1, S2) 81.61 ± 1.22 0.77 ± 0.02 81.80 ± 1.24

OB2SRNN 87.04 ± 0.93 0.84 ± 0.01 87.02 ± 0.92
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Furthermore, Figures 2 and 3 report the con-
fusion matrices of the different approaches for
the classification task at hand. Overall, the
heat map (Figure 2) related to OB2SRNN
has a more visible diagonal structure than
the one depicting the results produced by
RF (S1, S2) (Figure 3) (the darker red blocks
concentrated on the diagonal). On the other
hand, RF exhibits major confusions on class 2–
Ponds, which is often wrongly classified as 5–
Wet areas, mainly due to similar spectral char-
acteristics. This fact can also explain the poor
performance of RF (S1, S2) on the Ponds class
(see Table 3). We can also note that RF tends
to overestimate 7–Cereals, so decreasing its ef-
fectiveness on 1–Fallows and Uncultivated areas,
2–Ponds and 8–Legumes.This behavior can be
explained by the fact that RF does not leverage
the temporal dependencies available in the time
series, i.e., it may take some of its decision by
considering particular timestamps in which such
classes exhibit similar characteristics. To sum
up, we can state that, in most cases,OB2SRNN
shows a more effective behavior with respect to
RF, considering any of the classes involved in
the land cover mapping task.

Fig. 2: Obtained confusion
matrix for RF (S1, S2)

Fig. 3: Obtained confusion
matrix for OB2SRNN

Table 3: Per-Class F-Measure of the competing methods (average over ten dif-
ferent random splits). Class definitions are reported in Table 1.

Method 0 1 2 3 4 5 6 7 8

RF (S1, S2) 65.90 75.29 56.69 91.57 96.58 73.67 90.00 76.49 77.51

OB2SRNN 77.16 81.00 84.16 91.37 98.52 86.77 92.13 81.50 83.99

Qualitative inspection of LULC maps Figure 4 reports two representative
details of the land cover maps produced by RF (S1, S2) and by OB2SRNN . We
remind that land cover maps are produced by labeling each of the 116 937 seg-
ments obtained by the segmentation process. The first detail (Figures 4a to 4c)
depicts a wet area close (in the North) to the Toukar village, a medium-size
urban area. We have observed that RF (S1, S2) clearly underestimates the pres-
ence of 5–Wet areas class (purple) and tends to confuse it with 7–Cereals class.
Conversely, OB2SRNN exhibits a more effective behavior on such complex land
cover class detection. The second detail (Figures 4d to 4f) focuses on fallows lo-
cated near (in the West) the Diohine village. Also in this case, OB2SRNN allows
a better detection of 1–Fallows and Uncultivated areas class than RF (S1, S2)
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which confuse it with 8–Legumes class. In addition, RF (S1, S2) also overesti-
mates the real extent of the villages in the expense of 7–Cereals class. Overall,
the qualitative inspection is in concordance with the quantitative results in terms
of evaluation metrics obtained above.

Reference Images RF(S1,S2) OB2SRNN

(a) (b) (c)

(d) (e) (f)

Fig. 4: Qualitative analysis of land cover maps produced by RF (S1, S2) and
OB2SRNN in 2 different zones (top: focus on a wet area, bottom: focus on
fallow and uncutivated areas). The references supplied come from a PlanetScope
image acquired on October 4, 2018.

Inspection of the Attention parameters In this experiment we inspect the
side information provided by our model via the analysis of the attention pa-
rameters. As discussed in Section 3, OB2SRNN learns two set of parameters,
λrad and λopt. The attention parameters are usually employed, in the field of
NLP [2,4], to explain which are the contributions to the final decision of the dif-
ferent parts of the signal. With the aim to set up a similar investigation in our
context, we depict in Figure 5 the different λ values considering the two sources
of information via a box plots visualization. For each SITS, we consider its length
(16 for the radar SITS and 19 for the optical SITS) and, for each timestamps,
we collect the λ values learned by the model, leveraging box plots to draw val-
ues distribution. At first look, we can observe that the attention distributions,
considering both data sources, are skewed towards the last portion of the time
series. Such behavior seems to indicate that the majority of the information is
contained within the second part of the considered period. This is inline with the
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agronomic knowledge about the study area since, considering the year spanned
by the time series (2018), in the southern part of the Senegalese groundnut basin,
most of the activity related to agriculture happens between the period August
- October with the maximum vegetation (chlorophyll) activity peak occurring
at the end of August. Such period is characterized by an heavy rain activity.
This characteristic induces sharp contrasts among agricultural and non agricul-
tural land cover classes and differences in the canopy structures. Furthermore,
regarding only agricultural classes: Cereals and Legumes, the former is harvested
mid-September while the latter is harvested at the end of the considered Satellite
Image Time Series. Both meteorological conditions and agricultural practices can
explain why, according to the attention parameters analysis, the second portion
of the time series contains the major part of the useful information.

S1 S2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.2

0.4

0.6

Timestamp

La
m

bd
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va
lu

e

Fig. 5: Box Plots of the Attention parameters for the radar (S1) and the optical
(S2) SITS considering different timestamps.

5 Conclusion

In this work, we introduced a deep learning architecture to perform land cover
classification mapping, from multi-temporal and multi-source Satellite Image
Time Series data. The proposed method, named OB2SRNN , outperforms stan-
dard remote sensing approaches and enables the possibility to explicitly leverage
temporal as well as multi-source dependencies. Furthermore, we investigated
how the attention parameters, learnt by our model, can be employed to per-
form temporal reasoning about the time series data, thus contributing to the
interpretability of the decisions made by the neural network architecture.

References

1. Benedetti, P., Ienco, D., Gaetano, R., Ose, K., Pensa, R.G., Dupuy, S.: M3 fusion:
A deep learning architecture for multiscale multimodal multitemporal satellite data
fusion. IEEE JSTARS 11(12), 4939–4949 (2018)

2. Britz, D., Guan, M.Y., Luong, M.: Efficient attention using a fixed-size memory
representation. In: EMNLP. pp. 392–400 (2017)



10 Gbodjo et al.

3. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP. pp. 1724–1734 (2014)

4. Choi, H., Cho, K., Bengio, Y.: Fine-grained attention mechanism for neural ma-
chine translation. Neurocomputing 284, 171–176 (2018)

5. Erinjery, J., Singh, M., Kent, R.: Mapping and assessment of vegetation types in
the tropical rainforests of the western ghats using multispectral sentinel-2 and sar
sentinel-1 satellite imagery. Remote Sensing of Environment 216, 345–354 (2018)

6. Gao, Q., Zribi, M., Escorihuela, M.J., Baghdadi, N.: Synergetic use of sentinel-1
and sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 17(9),
1966 (2017)

7. He, W., Yokoya, N.: Multi-temporal sentinel-1 and -2 data fusion for optical image
simulation. ISPRS Int. J. Geo-Inf. 7(10), 389 (2018)

8. Hou, S., Liu, X., Wang, Z.: Dualnet: Learn complementary features for image
recognition. In: ICCV. pp. 502–510 (2017)

9. Iannelli, G.C., Gamba, P.: Jointly exploiting sentinel-1 and sentinel-2 for urban
mapping. In: 2018 IEEE International Geoscience and Remote Sensing Symposium,
IGARSS 2018, Valencia, Spain, July 22-27, 2018. pp. 8209–8212 (2018)

10. Ienco, D., Gaetano, R., Dupaquier, C., Maurel, P.: Land cover classification via
multitemporal spatial data by deep recurrent neural networks. IEEE Geosc. and
Rem. Sens. Letters 14(10), 1685–1689 (2017)

11. Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., Rodes, I.: Operational
high resolution land cover map production at the country scale using satellite image
time series. Remote Sensing 9(1), 95 (2017)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

13. Kolecka, N., Ginzler, C., Pazur, R., Price, B., Verburg, P.H.: Regional scale map-
ping of grassland mowing frequency with sentinel-2 time series. Remote Sensing
10(8), 1221 (2018)

14. Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification
of land cover and crop types using remote sensing data. IEEE Geosci. Remote
Sensing Lett. 14(5), 778–782 (2017)

15. Liu, J., Gong, M., Qin, K., Zhang, P.: A deep convolutional coupling network for
change detection based on heterogeneous optical and radar images. IEEE Trans.
Neural Netw. Learning Syst. 29(3), 545–559 (2018)

16. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral
image classification. IEEE Trans. on Geosc. and Rem. Sens. 55(7), 3639–3655
(2017)

17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. pp. 807–814 (2010)

18. Sharma, R.C., Hara, K., Tateishi, R.: Developing forest cover composites through
a combination of landsat-8 optical and sentinel-1 SAR data for the visualization
and extraction of forested areas. J. Imaging 4(9), 105 (2018)

19. Zhou, T., Zhao, M., Sun, C., Pan, J.: Exploring the impact of seasonality on urban
land-cover mapping using multi-season sentinel-1a and GF-1 WFV images in a
subtropical monsoon-climate region. ISPRS Int. J. Geo-Inf. 7(1), 3 (2018)


	RNN-based Multi-Source Land Cover mapping: An application to West African landscape 

