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Abstract. The advent of satellite imagery is generating an unprece-
dented amount of remote sensing images. Current satellites now achieve
frequent revisits and high mission availability and provide series of im-
ages of the Earth captured at different dates that can be seen as time
series. Analyzing satellite image time series allows to perform continu-
ous wide range Earth observation with applications in agricultural map-
ping, environmental disaster monitoring, etc. However, the lack of large
quantity of labeled data generally prevents from easily applying super-
vised methods. On the contrary, unsupervised methods do not require
expert knowledge but sometimes provide poor results. In this context,
constrained clustering, which is a class of semi-supervised learning algo-
rithms, is an alternative and offers a good trade-off of supervision. In
this paper, we explore the use of constraints with deep clustering ap-
proaches to process satellite image time series. Our experimental study
relies on deep embedded clustering and the deep constrained framework
using pairwise constraints (must-link and cannot-link). Experiments on
a real dataset composed of 11 satellite images show promising results
and open many perspectives for applying deep constrained clustering to
satellite image time series.

Keywords: time series, satellite images, remote sensing, clustering, con-
straints, deep embedded clustering

1 Introduction

Deep learning is widely used in a large panel of domains, and sees a high inter-
est in the remote sensing community [25]. It achieves great results but is highly
dependant on the amount of available data, and more specifically labeled data.
Remote sensing produces a large amount of data which often lacks of annota-
tions. This problem is even more pregnant for times series of satellite images.
Satellite images can be freely acquired every 5 days, however, due to the com-
plexity of the data and the lack of a well defined typology, it is difficult to use
supervised approaches. Therefore multiple clustering methods are applied in the
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domain [1, 2]. But even if fully labelled data are not available, there are still a
lot of background knowledge available from experts.

Constraints are a good way to exploit this knowledge, in this paper we will
focus only on pairwise constraints, must-link (ML) and cannot-link (CL). They
are widely used and well studied [3], which makes it easier to have a comparison
baseline, as they are implemented by a lot of different methods. These constraints
indicate that two instances should be assigned to the same cluster (must-link)
or that they should be assigned to different clusters (cannot-link).

In this paper, we want to study if we can benefit from the advances in deep
learning through a constraint-based framework that seems more appropriate to
the remote sensing domain. We first introduce related works on clustering for
time series and constrained clustering, respectively in section 2.1 and 2.2, then
we present the deep constrained clustering framework and its adaptation to time
series in section 3, then we compare the results to classic constrained clustering
on remote sensing data in section 4. Finally, we discuss our results and the future
works in the section 5.

2 Related Work

2.1 Clustering for time series

Different approaches for clustering of time series have been proposed through
time, mostly based on some representation methods like Discrete Wavelet Trans-
form [5] or similarity measures like Dynamic Time Warping [6]. Those methods
are then usually used to be incorporated into some standard clustering algo-
rithms from the k-means, k-medoid, spectral or hierarchical clustering families,
as shown in the review by Aghabozorgi et al. [4]. In this field, some improve-
ments are still made, with, e.g., the k-shape algorithm [7], which is based on
an iterative refinement procedure that uses a normalized version of the cross-
correlation measure. One of the difficulties with time series is the heterogeneity
of the related topics and the types of data, starting from the number of features
or the sequences length, to the type of correlation between elements, based on
shape or structure, with different amplitudes.

This issue has been tackled in the supervised learning by the rise of repre-
sentation learning through deep neural networks. Recently some deep clustering
approaches have been proposed. They are essentially based on some end-to-end
architectures that simultaneously learn an embedding for the data and a cluster-
ing assignment, through an autoencoder and a clustering layer plugged on the
encoder output [8, 9]. A derived architecture have been developed for time series,
that uses a 1D-CNN followed by a Bi-LSTM as autoencoder, to preserve the time
dimension in the encoded features, they are then clustered by a similarity metric
as a clustering layer [10].

2.2 Constraints in clustering

A lot of works have been done on constraints integration for clustering. Most of
them rely on some extension of standard clustering algorithm like k-means [14]
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or spectral approaches [15], but there are also some dedicated methods like
constrained programming clustering [16]. A comparative study has been done
on the subject on time series [17].

In the deep learning domain, most of the semi-supervised methods refer to
self-learning approaches or other way to include knowledge in supervised task.
But recently some works have been proposed to include pairwise constraints
in deep clustering networks [13, 12]. Both of these papers use constraints as an
input for an extended loss function that tends to maximize the similarity of
the encoded values between elements of a must link constraints and respectively
minimize it for a cannot link constraints. Our work is based on the paper of
Zhang et al. [13]. Most of our work consists in adapting this method to time
series and study its results on satellite image time series. This method handles
different types of constraints, but, as indicated above, we focus on ML and CL
in this paper.

3 Deep Constrained Clustering Framework and its
adaptation to time series

The Deep Constrained Clustering framework (DCC) presented by Zhang et
al. [13] is based on a deep clustering method, the Deep Embedded Cluster-
ing (DEC) [8] and its improved version (IDEC) [9]. We first describe the IDEC
framework, then how it is extended with constraints through the DCC framework
and finally how we adapted it to time series.

3.1 Improved Deep Embedded Clustering

Deep Embedded Clustering (DEC) [8], in the initial step, trains an autoencoder
(xi = g(f(xi))) and then removes the decoder. Then, it fine-tunes the remaining
encoder (zi = f(xi)) by optimizing the Kullback Leiber divergence between two
distributions Q and P . Q is a soft cluster assignment, where for each instance
i we compute a vector qi of length k, k being the number of expected clusters,
where qij is the degree of belief that the instance i belongs to cluster j. P is the
target distribution that is defined from Q as a "hard" assignment vector that
assign i to only one cluster. We have the following loss, Lc, as clustering loss:

Lc = KL(P |Q) =
∑
i

∑
j

pij log
pij
qij

(1)

where qij is the similarity between the embedded point zi and cluster centroid
µj measured by Student’s t-distribution [18]:

qij =
(1 + ||zi − µj ||2)−1∑
j(1 + ||zi − µj ||2)−1

(2)

and pij is the target distribution defined as:

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

(3)
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The set of centroids µ is initialized using a k-means on z. The improvement from
IDEC [9] is to keep the decoder and the reconstruction loss Lr even after the
initialization. The intuition behind it is that the clustering loss, by distorting
the embedding space, may alter the representativeness of embedded features and
thus the clustering performance, clusters being no more meaningful. Therefore,
the clustering loss improves separability of clusters, while the reconstruction loss
keeps clusters matched to the features learned by the autoencoder in the first
step. The reconstruction loss is computed as the mean squared error between
the input time series and the output of the autoencoder. So we have a combined
loss that is defined as follow:

L = Lr + γ ∗ Lc (4)

where γ > 0 is a coefficient that controls the degree of distorting embedded
space.

3.2 Constraints integration

The extension of DEC to incorporate constraints is based on the Deep Con-
strained framework (DCC) [13]. They propose four types of constraints, but we
only took in consideration pairwise constraints, because they are supported by
various types of constrained clustering algorithm.

The loss function used for must-link constraints set ML is:

lML = Lr − γML ∗
∑

(a,b)∈ML

log
∑
j

qaj ∗ qbj (5)

In the same way, the loss function for cannot-link constraints set CL is:

lCL = −
∑

(a,b)∈CL

log(1−
∑
j

qaj ∗ qbj) (6)

In an intuitive way, ML loss prefers instances with same soft assignments and the
CL loss prefers instances with opposite assignments. The ML loss is mitigated by
a coefficient γML > 0 and the addition of the reconstruction loss Lr in a similar
way that the clustering loss Lc to prevent the method to assign all elements to
only one cluster.

3.3 Application to satellite image time series

The main purpose of these experiments is to see if this new type of constrained
clustering can be applied on satellite image time series and how it competes with
the state of the art. We tested the original DCC framework, which is composed
of fully connected layers. The network architecture remains unchanged, the time
series is only flattened before being fed to the encoder. We also proposed a
modified version of DCC with 1D-convolutional layers, as it proved to work well
on time series supervised classification [19]. In this new version, we keep the
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original input dimension and the network is composed only of 1D-convolutional
layers followed each time by a batch normalization layer and the embedding layer
is preceded by a global average pooling layer. The embedding layer remains a
fully connected layer. We did not include the method in [10] yet, as it relies on
the choice of a similarity metric for the target distribution.

4 Experiments and results

4.1 Dataset and experimental setup

For these experiments, we apply these methods on crop classification which is an
important field of research in remote sensing that has seen numerous study [21,
20]. The dataset is composed of 12 class of different kind of crops (wheat, corn
silage, irrigated corn, ect, see Fig. 1c), located near Toulouse (Southwest France).
The original set of images3 is composed of 11 multispectral (green, red, and
near-infrared) 1000× 1000 pixel images non-uniformly sampled from 15/02/07–
20/10/07 and captured by the Formosat-2 satellite. One of the images is pre-
sented in Fig. 1a. The dataset is composed of pixels randomly selected within
the annotated areas (see Fig. 1b) that were then split into a train and test sets
composed of 1974 and 9869 pixel time series respectively. The algorithms are
evaluated using the test set. The train set is only used to set hyperparameters
for the spectral clustering method (Spec). Constraints are generated from the
test set by randomly sampling pairs of pixels and creating an ML or CL con-
straint depending upon their labels. The reference data is based on farmer’s
declaration to the EEA’s Common Agricultural Policy. To test how methods
benefit from constraints, we define three levels of constraints size: 5%, 15% and
50% of the cardinality of the dataset N = 9869 (a very small fraction of the
number of possible constraints, 1

2N [N − 1]). For the evaluation we used the Ad-
justed Rand Index (ARI) and the constraints satisfaction rate (Sat.) averaged
over ten runs. For each level of constraints, ten random sets of constraints were
generated to be used at each run. This ensures that each method benefits from
the same constraints.

4.2 Methods compared and parametrization

To have a comparison baseline, we add to the two deep constrained clustering
methods, four standards constrained clustering methods. We use a constrained
k-means algorithm (COP-KMeans) [14], a spectral method (Spec) [15], a declar-
ative method (CPClustering) [16] and a collaborative method with 3 k-means
agents (SAMARAH) [23]. To highlight the variability caused by the choice of
metric, we use the Euclidean and the DTW metrics [6]4.
3 Provided by the Centre d’Études Spatiales de la Biosphère (CESBIO) Unité Mixte

de Recherche CNES-CNRS-IRD-UPS, Toulouse, France.
4 Implementations for compared method available at from https://icube-forge.
unistra.fr/lampert/TSCC
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(a) Image (b) Reference Data (c) Class Labels

Fig. 1. An image from the time series: 12 classes, and 11 time points (t4 displayed
here).

Note that CPClustering does not require any initialization parameters. The
others need at least the number of clusters, otherwise default parameters were
used. The only exception is the Spec method which needs some hyperparameters
that are defined by grid search on a the train set. For deep clustering, we follow
the settings in DEC [8] and IDEC [9] but as the results were not stable we
had to do some minor changes (see section 4.3 for more details). For the layers
dimensions we set the embedding layer to a dimension of 2 instead of 10, because
it seems to give more stability. For the DCC, the encoder network is set to
dimensions d− 500− 500− 2000− 2, where d = l ∗ f and l is the length of the
input time series and f the number of features per time step, and for DCC-conv
the dimensions are l ∗ t−128−256−128−2, the corresponding 1D-filters have a
dimension of 8− 5− 3, following Wang et al. [24]. For each of them the decoder
is a mirror of the encoder. For the optimizer both of them are trained using a
SGD with momentum of 0.9 and a decay value of 1e − 6, to compensate the
variability mentioned before. γ and γML are both set to 0.1 as described in the
original papers, these values should be set as small as the learning rate used is
high, otherwise the effect of the distortion is too important if both are high, or
negligible if both are low. In our case, the learning rate is set high (0.1) so the
clustering loss should have less weight (0.1) than the reconstruction loss, more
explanations can be found in [9]. 5

4.3 Results

The results with and without constraints are presented in Table 1. Spec gives
the best overall results, but that must be mitigated, as mentioned before, by

5 The source code used for this paper: https://github.com/blafabregue/
DeepConstrainedClustering
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Table 1. Unconstrained and Constrained ARI and constraint satisfaction. The best
performances for each measure, constraint fraction, and distance measure are high-
lighted in bold. Unconstrained satisfaction was measured using the 50% constraint
sets.

Method Distance Unconstrained 5% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans [14] DTW 0.426 0.812 0.416 1.00 0.407 1.00 0.436 1.00
Eucl. 0.420 0.807 0.406 1.00 0.443 1.00 0.369 1.00

Spec [15] DTW 0.531 0.840 0.683 0.867 0.725 0.888 0.786 0.911
Eucl. 0.737 0.885 0.671 0.854 0.702 0.875 0.781 0.916

CPClustering [16] DTW 0.437 0.803 0.469 1.00 0.510 1.00 0.589 1.00
Eucl. 0.681 0.413 0.650 1.00 0.542 1.00 0.510 1.00

SAMARAH [23] DTW 0.406 0.802 0.597 0.870 0.637 0.867 0.681 0.878
Eucl. 0.463 0.817 0.691 0.884 0.714 0.890 0.702 0.885

DCC [13] 0.703 0.885 0.550 0.852 0.448 0.816 0.615 0.862

DCC-Conv 0.508 0.833 0.497 0.844 0.491 0.819 0.820 0.936

the fact that it needs a training for its hyperparameters (for unconstrained its
average results is at 0.367 against the retained configuration at 0.737). We can
also point out that the result depends on the chosen similarity metric. This
is also the case for the other metric-based methods at the exception of COP-
KMeans which performs badly in both cases. The deep clustering only proves to
be more efficient when the number of constraints are very high and only with
the convolutionnal architecture. But the most intriguing point is the partially
opposite behavior of the two architectures.

DCC gives relatively good results in unconstrained configuration, but the
constraints have a strong negative effect. This effect has already been studied
in constrained clustering, and can be observed for all other methods at the
exception of SAMARAH. It was observed in Lampert et al. [17] that if the
algorithm already captures well the structure of the data it will not benefit,
or even have a negative effect, from constraints addition. This seems to be the
case for DCC. This goes in an opposite conclusion than Zhang et al. [13], which
concludes to no negative effect. In our case this can be explained by the noisy
ground truth used (presence of trees or road across the field, problem of frontier
pixels).

DCC-Conv, in the other hand, obtains good results with constraints, but only
if the number of constraints is high enough. Indeed the way constraints are used,
in the backpropagation, does not enforce the algorithm to respect constraints,
and needs a lot of information to be sure that it propagates to the weights. On
this point DCC-Conv really shows its specificity, it was observed in Lampert
et al. [17] that methods does not necessarily benefits from a higher number of
constraints, but mostly from informative and coherent constraints. In this case,
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the ARI seems linked to the number of constraints which may let think that the
network starts to learn the dataset itself and not the structure, the algorithm
being trained and learn on the same set.

Two other points have to be highlighted, that are not displayed in Tab 1.
First the standard deviation strongly increases with constraints and stabilizes
again when the number of constraints is higher, for DCC and DCC-Conv (i.e.
for DCC-Conc, standard deviation is respectively for unconstrained, 5%, 15%,
50% at 0.005, 0.069, 0.010 and 0.015). This seems to show that the quality of
constraints is important, the impact of noise might therefore be smoothed by the
number of constraints. The second one is that the network is not stable during
the training, this is the case for both architectures but in a higher amplitude
for DCC. This tends to stabilize, due to the decay added in the optimizer, but
the variability remains (i.e. for DCC, ARI goes from 0.55 to 0.74 to go down
to 0.45). An illustration of this instability can be seen in figure 2. In a first
step, the ARI increase smoothly, but then it starts to oscillate and struggle to
converge again. This is mostly the case for constrained runs and but also, in a
smaller amplitude for unconstrained runs. This seems to come mainly from the
fact that the target distribution (the hard assignment) is updated regularly, so
the objective function does not aim the same target.

(a) DCC with 50% constraints (b) DCC-Conv with 50% constraints

Fig. 2. Evolution of ARI measure through the training process compared between DCC
and DCC-Conv.

5 Conclusion

The deep clustering demonstrates that it can achieve good results on remote
sensing time series without and with constraints. Moreover, it does not require
to choose a representation method as it is learned by the autoencoder, which
makes it easier to handle for a domain expert. However the role played by the
hyperparameters (i.e. dimensions of layer, especially the embedding layer, opti-
mizer) needs some further investigations, as they seem to influence the output
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quality. There are also two main problems that we plan to study. First, DCC is
not as robust as expected from the result of the previous studies. Second, the
instability in the training and in the impact of constraints lowers the average
result. We plan to study which factors may induce these problems, and further
investigate the effect of noisy constraints, the size of the dataset and how con-
straints can be differently integrated. Finally, we also plan to study how the
learned network behave on transfer learning.
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