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Abstract. Modern sensor technologies are capable of covering large sur-
faces of the Earth with exceptional spatial, spectral, and temporal reso-
lutions. With the significant development of hyperspectral imaging tech-
nology, change detection, which discovers change knowledge about Earth
surface, has emerged as a hot topic in remote sensing. In this paper, we
propose a deep learning enhanced change detection methodology that
leverages the power of traditional change vector analysis techniques by
gaining in accuracy with autoencoding neural networks and clustering.
Preliminary experiments performed evaluating the proposed methodol-
ogy with bechmark data provide encouraging results, also when com-
pared to recent state-of-the-art change vector analysis competitors.

1 Introduction

HyperSpectral Image analysis (HSI) for Change Detection (CD), HSI-CD in
brief, is a process that identifies the difference between two, or multiple, hyper-
spectral images acquired with the same spectral sensor technology over the same
geographical scene at different times. This process has relevant applications in
assessing natural disasters, as well as monitoring crops. Although several CD
and HSI analysis methods have been described in the recent literature, this does
not mean that the HSI-CD problem can be readily solved.

The HSI-CD problem is made inherently complex by the high dimension-
ality of the HSI data. In particular, the existence of hundreds of narrow con-
tinuous bands makes computationally expensive identifying the changes in a
high-dimensional feature space [15]. Another challenge is that the number of
change detection datasets is very limited—acquiring a label for each pixel is
labor-intensive and time-consuming [7].

To deal with both these challenges—the high dimensionality and the lack of
ground truth labels—change vector analysis techniques have been already fitted
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to CD-HSI problems. These techniques are mainly based on image differencing
operators and rely on the computation of distances or angle between pairs of
HSI pixels corresponding to the same position of the scene in the compared im-
ages. They commonly apply unsupervised threshold algorithms, such as in the
Otsu’s algorithm [12], in order to separate changed regions from unchanged back-
ground based on the distance range [10]. Complex spatial-aware algorithms, e.g.
watershed, have been recently explored in combination with distance mappers,
in order to improve the accuracy of change vector detection techniques [9].

On the other hand, with the increasing popularity of deep artificial neural
networks (NNs), growing interest has arisen in using deep learning also in HS
image analysis due to its powerful learning ability in presence of high dimen-
sions [14]. However, as a result of the limited number of labeled datasets, it
is difficult to actually train the whole NN architecture with ground-truth label
information. At present, change detection approaches based on deep learning
can be mainly divided into the following three categories: a) a deep network
is trained with pseudo-training samples yielded by other unsupervised change
detection methods [18], b) a deep network is trained in an unsupervised way
without a-priori labels [20], and c) a deep network, pre-trained from a different
classification dataset, is subsequently used for change detection in an unsuper-
vised way [2]. Nevertheless the current investigations of deep learning in HSI-CD
problems are still insufficient.

Based upon the emerging developments of unsupervised deep learning ap-
proaches [16] and the success of change vector analysis techniques in HSI-CD [10,
9], we have decided to explore the use of NNs autoencoders in combination with
the change vector analysis. Autoencoders have been already investigated as a
deep learning approach for anomaly detection [21] also in HS image analysis
[19]. The autoencoding technique has been also investigated in HSI classifica-
tion [11]. However, a few studies consider autoencoders for change detection and
they mainly apply autoenconders as a feature learning stage for training a clas-
sification model with ground-truth labels acquired in a supervised setting [5,
9]. Instead we design a fully unsupervised methodology, where we exploit an
autoencoder NN to deal with the high dimension of HSI data by mapping HSI
samples into a low-dimensional manifold, where changed samples can be accu-
rately separated from the unchanged ones. In particular, we enhance the change
information modeled by a traditional image differencing operator with the fea-
tures engineered through the hidden encoded code of an autoencoder. We also
resort to a Gaussian Mixture Model, in order to separate regions where a change
is occurred in the scene from the unchanged background. Finally we exploit the
spatial autocorrelation , in order to refine the change result and produce the CD
map of the scene.

We note that autoencoding and change vector analysis techniques have al-
ready been explored in the HSI-CD imaging literature. However, to the best of
our knowledge, the novelty of this study is the specific formulation adopted for
autoencoding within the change vector analysis, as well as the effectiveness of the
combination of these components in a methodology that actually outperforms



the accuracy of state-of-the-art change vector analysis competitors in benchmark
bi-temporal HSI data. In particular, this study paves the way for proving that
the proposed formulation of autoencoding, image differencing and clustering is
an effective unsupervised means to accurately detect regions of changed pixels in
a scene based of HS information. In general, our methodology gains in accuracy
when compared to traditional change vector analysis techniques, which are also
unsupervised, but neglecting NNs representations.

The remainder of this paper is organized as follows. The proposed methodol-
ogy is illustrated in Section 2. Section 3 provides the details of the experiments,
which are carried out in this study, and their results, along with important
discussions, are reported. Finally, Section 4 draw the conclusions and future
developments.

2 Methodology

The proposed methodology is named AICA – Autoencoding of bi-temporal Hy-
perspectral Images for Change Vector Analysys. It works on both X1 and X2,
which are bi-temporal HSI acquisitions of a m×n scene and outputs a CD map
of the scene. Both X1 and X2 are two co-registered HS images, which describe
spectral data acquired for the same geographic scene.They are acquired at two
distinct consecutive time periods by using the same spectral sensor technology.
Every HS image is represented as a tensor of m×n pixels described with k spec-
tral bands. A pixel denotes an area of around a few square meters of the Earth’s
surface—it is a function of the sensor’s spatial resolution—which is unequivo-
cally referenced with spatial coordinates (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n,
according to the usual matrix representation. Specifically, for both X1 and X2,
the pixel indexed by row i and column j contains data sensed on that resolution
cell over k spectral bands. Every spectral band is a numeric feature proportional
to the surface reflectance and for a given band. The CD map is a binary m× n
matrix assigning each pixel (i, j) of the scene to a binary label, i.e., “change” or
1, and “no-change” or 0.

In principle, the learning process performed by AICA is divided into into three
stages:

1. performing change vector analysis by applying a distance operator, in order
to compute pixelwise the image differencing between X1 and X2;

2. training an autoencoder NN architecture on the fusion of X1 and X2 and
performing a clustering analysis of the scene based on information generated
with image differencing and image fusion autoencoding;

3. producing the CD map from clustering and applying a spatial correction
procedure based on the expected spatial autocorrelation of the CD labels.

2.1 Image differencing

Image differencing is performed by applying mathematical functions that com-
pare pixel-by-pixel the spectral band values of both X1 and X2, in order to



Fig. 1. AICA - Autoencoding of bi-temporal Hyperspectral Images for Change Vector
Analysys

quantify the range of the change. Pixels associated with changed regions tend
to produce distance values significantly higher than the ones associated to un-
changed regions. In this study, we consider the Spectral Angle Mapper (SAM)
to compute the distance as it is simple and fast to compute [6]. It has been
widely used in change vector analysis [8–10] mainly for material identification.
In addition, as pointed out by [13], the computation of the SAM algorithm is
independent of the number of spectral bands and insensitive to sunlight. Let us
consider the pixel in position (i, j), the distance SAM(i, j) measures the angle
between the bi-temporal spectral vectors associated with (i, j) in both X1 and
X2, respectively. Formally, this angle is computed as follows:

SAM(i, j) = arccos
|X1

ij ·X2
ij |

|X1
ij | · |X2

ij |
, (1)

where X1
ij and X2

ij denote the vectors of spectral bands acquired for the pixel

at position (i, j) of X1 and X2, respectively.

2.2 Autoencoding and clustering

The autoencoding technique is computed by using a NN architecture consisting
of an encoder function h = f(x)—mapping the input x to an hidden code h—and
a decoder producing the reconstructed input x̂ = g(h), learned by minimizing
a loss function L(x, g(f(x)) = L(x, x̂) penalizing x for being dissimilar from x̂
such as Lmse(x, x̂) = 1/n

∑
i ||xi − x̂i||2 [1]. In this study, the autoencoder NN

inputs all m × n pixels of the sensed scene spanned on the feature space that
is derived by the fusion of X1 and X2. Specifically, we use the fusion operator
already considered in [9] computing X− = X1−X2 so that the k-th fusion feature
associated with the pixel in position (i, j) in X− is determined as follows:

X−ijh = X1
ijk −X2

ijk, (2)

where X1
ijk and X2

ijk denote the values measured at the k-th spectral band in

vectors X1
ij and X2

ij , respectively.



After the completion of the autoencoder training on X−, we select the pixel
representations on the encoding level h of the trained autoencoder. These en-
coding features, augmented with the SAM feature and computed during the
image differencing stage, are jointly processed across a clustering analysis. As a
clustering algorithm, we consider the popular Gaussian Mixture Model (GMM)
algorithm. Gaussian models have been already used as pivotal components of
various HSI analysis systems [4]. They represent the probability density of the
data with a weighted summation of a finite number of Gaussian densities with
different means and standard deviations (or covariance matrices in case of multi-
variate GMM). In clustering, Gaussian models allow us to group data into a finite
number of Gaussian clusters by modeling the cluster conditional probability with
maximum likelihood. In particular, the GMM algorithm estimates the clustering
parameters from the training data using the iterative Expectation-Maximization
(EM) algorithm. Based upon the estimated parameters, the GMM algorithm de-
termines the likelihoods of every pixely to belong to each clusters. However, in
this study, instead of using decoupled two-stage training and the standard EM
algorithm to determine likelihoods, we apply the approach recently introduced
in [21]. This jointly optimizes the parameters of the deep autoencoder and the
mixture model simultaneously in an end-to-end fashion, leveraging a separate
estimation network to facilitate the parameter learning of the mixture model. In
particular, this joint optimization helps the autoencoder escape from less attrac-
tive local optima and to a further reduction of reconstruction error. We fixed the
number of clusters to 2, since we have to separate changed pixels from unchanged
ones.

2.3 CD map production and spatial correction

After the pixels have been separated into two clusters— each pixel is assigned
with the cluster for which the highest likelihood has been estimated—we have
to decide the label (changed vs not-changes) to be assigned to each cluster and
consequently to the pixels grouped in each cluster. To this purpose, we calculate
the average change indicator of each cluster as the average SAM distance for
each pixel assigned to the study cluster, that is:

changeI(Ck) =

∑
(i,j)∈Ck

SAM(i, j)

|Ck|
, (3)

where Ck is a pixel cluster and |Ck| denotes the number of pixels grouped
in Ck. According to the traditional theory inspiring change vector analysis
techniques, pixels and, consequently clusters, with the highest value of SAM
should delineate the changed regions in the study scene. Therefore, let Cmax =
argmax
Ci,i=1,2

changeI(Ci) be the cluster associated with the highest average change

indicator. Pixels are assigned to label “changed” if they are grouped in Cmax,
“not-changed” otherwise.



Final considerations concern the fact that the brute application of image
differencing, autoencoding and clustering to produce the CD map will neglect the
spatial arrangement of pixels. In particular, it may occasionally yield spurious,
isolated assignments of pixels to clusters. To avoid this issue, we may apply the
principle of local auto-correlation congruence of objects [17]—detected clusters
are generally expanding over contiguous areas. Based on this principle, we may
decide to change the assignment of pixels that strongly disagree with surrounding
assignments. This mainly corresponds to perform a spatial-aware correction of
the original clusters—based CD assignment. Based upon this correction, each
pixel may be re-assigned to the cluster (and to its label) that originally groups
the most part of its neighboring pixels.

3 Experimental study

We consider a benchmark co-registered bi-temporal HS dataset, in order to val-
idate the effectiveness both in terms of accuracy and efficiency. This dataset has
been already considered in the empirical studies of [10] and [9].

3.1 Data

The dataset is acquired by using the Hyperion sensor. This is a space-borne
system carried on the EO-1 satellite, which includes 242 spectral bands covering
wavelengths between 0.4 and 2.5 µm. The spectral range is divided into two inter-
vals: the VNIR range (that includes 70 bands with wavelengths ranging from 356
to 1058 nm) and the SWIR range (that consists of 172 bands with wavelengths
between 852 and 2577 nm). The spectral and spatial resolution of this sensor is
about 10 nm and 30 m, respectively, over a 7.5-km strip. The originally sensed
data (without any pre-elaboration) are available at the U.S. Geological Survey3.
The study area covers an irrigated agricultural field in Hermiston City, Umatilla
County, Oregon, USA. This area provides benchmark agricultural scenes, which
are frequently used in the evaluation of the effectiveness of HS change detection
algorithms. The land-cover types are soil, irrigated fields, river, buildings and
types of cultivated land and grassland. The HS images are sensed at 2004 and
2007, respectively. The data consist of 390× 200 pixels co-registered by using a
multilayer fractional Fourier transform [3]. As no band selection is performed by
the competitors, all 242 spectral bands are considered also in this study.

3.2 Implementation details and experimental set-up

AICA is written in Python 3.7. The autoencoder architecture consists of three
hidden layers. The encoder reduces the input feature space through layers with
141 and 1 neurons in the bottleneck layer. The decoder maps the bottleneck
signals back to the input space through two layers with 141 and 242 neurons.

3 https://www.usgs.gov/



Table 1. Performance analysis of AICA on Hermiston data: OA, FAR and MAR by
varying the size of layer h between 1 and 4 neurons in the autoencoding architecture.

h OA FAR MAR

1 0.9887 0.0045 0.0604
2 0.9390 0.0365 0.2269
3 0.9198 0.0893 0.0173
4 0.9070 0.1009 0.0384

(a) GT (b) AICA CD map

Fig. 2. Hermiston bi-temporal scene: ground truth (GT) in Figure 2(a) of the change
occurred between 2004 and 2007; the separation of white changed objects from black
background computed by AICA in Figure 2(b).

The mean squared error (mse) has been used as the loss function to be optimized
with the ADAM algorithm. The hyperbolic tangent (tanh) has been selected as
activation function for each layer. The fitting procedure is iterated over 200
epochs.

The accuracy performance is evaluated with Overall Accuracy (OA), Missed
Alarm Reate (MAR—changed pixels wrongly assigned to the un-changed back-
ground) and False Alarm Rate (FAR—un-changed pixels wrongly labeled within
the region of the occurred change). The efficiency performance is evaluated with
the computational time (TIME) spent in seconds completing the iterative learn-
ing process on notebook, CPU i7-6700 3.40 GHz,16.0 GB RAM, running Win-
dows 10 Pro. The performance metrics are measured on five trials.

3.3 Results and discussion

We start this investigation by analyzing the sensitivity of the performance of
AICA to the size of the bottleneck layer h in the autoencoding architecture of
AICA. Results in terms of OA, FAR anf MAR are reported in Table 1. They show
that the highest performance is achieved when h includes 1 neuron only. The CD
map of this configuration is plotted in Figure 2(b). Our interpretation is that



Table 2. Performance analysis of spatial correction of AICA on Hermiston data: OA
and TIME when AICA is run with both the spatial correction enabled (row 1) and
the spatial correction disabled (row 2). AICA is run in the baseline configuration with
h = 1.

spatial correction OA TIME (secs)

enabled 0.9887 372.25
disabled 0.9874 369.12

this configuration is actually able to isolate the information that describes at the
best the change occurred in the study scene. As the CD accuracy progressively
decreases as the size of h increases, we draw the hypothesis that by augmenting
the number of neurons in the level h, useless noise is added to the representation
of the change extracted through the autoencoding.

We proceed this investigation by verifying if the spatial correction actually
gains in CD accuracy and how this operation affects the computation time spent
processing the HSI data and producing the CD map. The OA and TIME of
AICA are reported in Table 2. Results confirm the ability of spatial correction
of improving the accuracy by correcting a few spurious cluster assignments. In
addition, this gain in accuracy is at the expenses of a slight addition to the burden
of computation. Finally, we also note that the entire CD process performed by
AICA is completed spending about six minutes.

We conclude this analysis by comparing the accuracy of AICA to that of recent
vector-analysis change competitors that have been reported in the literature and
evaluated on this dataset [10, 9] respectively. As the authors of these papers have
provided the pre-processed datasets they analysed, we are able to perform this
comparative analysis in a safe environment, where the accuracy of the compared
methods is actually evaluated under the same pre-elaboration of the data. In par-
ticular, authors in [10] report the performance of a fully unsupervised approach
that combines the SAM distance algorithm with a threshold algorithm based
on the Otsu’s approach. On the other hand, authors in [9] illustrate the perfor-
mance of a fully unsupervised approach that combines a watershed algorithm
with the SAM distance algorithm and the Otsu’s algorithm. Both competitors
use spatial correction. Results are reported in Table 3. We note that AICA out-
performs both competitors (included the one accounting for spatial information
through watershed) in terms of both OA and FAR, while it performs slightly
worse than competitors in terms of MAR. This means that the higher accuracy
is coupled with a reduction of the number of false alarms, although this may
cause an higher number of missed alarms. In general, the overall result confirms
the effectiveness of our idea of enhancing the change vector analysis with the
information extracted at the encoder level of an autoencoding architecture.

4 Conclusion

This paper illustrates a fully unsupervised methodology for analyzing bi-temporal
HSI data of a geographical scene and detecting the changed regions of the scene.



Table 3. Compared competitors: approach (column 1), OA (column 3), FA (column 4)
and MA (column 5).

competitor description OA FAR MAR

SAM+Otsu[10] 0.9840 0.0122 0.0319
Watershed+SAM+Otsu[9] 0.9870 0.0078 0.0355

AICA 0.9887 0.0045 0.0604

The proposed methodology enhances the traditional change vector analysis, al-
ready considered in the recent literature to addess HSI-CD problems, with rele-
vant representation of change information extract through an autoenconding NN
architecture. Spatial autocorrelation is also taken into account, in order to gain
in CD accuracy. The preliminary experimental study is performed bi-temporal
HSI data collected into a benchmark agricultural scene. They reveal that the pro-
posed methodology is able to provide competitive accuracy compared to recent
state-of-the-art change vector analysis techniques. In fact, with the encourag-
ing performance of the proposed methodology, precise land-use land-cover (or
cropping pattern) changes may be identified. Some directions for further work
are still to be explored. New data scenarios may be considered for the empiri-
cal evaluation. In addition, the spatial information that is actually used in the
post-processing phase only, may be also exploited during the autoencoding and
clustering phases, in order to improve the ability of extracting a valuable rep-
resentation of the change occurred in the data. Finally, we plan to epand the
proposed methodology from bi-temporal to multi-temporal applications.
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