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Abstract. Chatbots as conversational recommender have gained in-
creasing importance over the years. The chatbot market offers a va-
riety of applications for research and industry alike. In this paper, we
discuss an implementation that supports the use of our recommen-
dation algorithm during chatbot communication. The program eases
communication and improves the underlying recommendation flow.
In particular, the implementation makes use of our model-based rea-
soning approach for improving user experience during a chat, i.e., in
cases where user configurations cause inconsistencies. The approach
deals with such issues by removing inconsistencies in order to gener-
ate a valid recommendation. In addition to the underlying definitions,
we demonstrate our implementation along use cases from the tourism
domain.

1 INTRODUCTION
Recommender systems aim to lead users in a helpful and individu-
alized way to interesting or useful items drawn from a large space
of possible options. Recommender systems may utilize knowledge-
bases for guiding the users through the whole process of finding the
right recommendation, i.e., a recommendation that satisfies the user’s
requirements, needs, or expectations. Most recently, conversational
agents like chatbots have gained importance because of the fact that
they – in principle – offer a well-known and ideally more intuitive
interface for human users, i.e., either textual or speech interaction.

In previous work [17] we introduced the basic foundations and
principles behind a chatbot-based recommender system that allows
to interact with users in a smart way being capable of finding contra-
dictions during observation and efficiently pruning the overall rec-
ommendation process via selecting the right questions to be asked
to the user. The basic principles behind our approach rely on classi-
cal model-based reasoning. In case, the conversation leads to an in-
consistent state, e.g., caused by contradictions between user require-
ments and the recommendation knowledge-base, the chatbot is able
to react and to resolve this issue. For this purpose, the chatbot asks
the user which requirements to retract in order to eliminate incon-
sistencies. In the case where the chatbot has far to many solutions
to be presented effectively to the user, the system makes use of an
entropy-based approach for selecting those requirements or attributes
that have to be fixed in order to reduce the number of possible solu-
tions. When using entropy the number of steps necessary to reach to
a solution can be substantially reduced.

This paper is a direct successor of our previous work, where we
report on an implementation of our chatbot approach. In particular,
we discuss the implementation details, present experiences gained,
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and finally introduce the results of an evaluation of the implementa-
tion. The evaluation is based on a case study from the tourism do-
main, i.e., a scenario where a user wants to book a hotel in a certain
city. The obtained results show that the proposed chatbot approach is
applicable and beneficial for the intended purpose. Furthermore, we
gained experiences about the limitations of the approach. For exam-
ple, it seems that entropy is not always the best measure for selecting
questions to be answered, and further research is needed.

The main contributions of this paper can be summarized as the
follows:

1. An implementation of an algorithm that is based on model-based
diagnosis and Shannon’s information entropy to solve recommen-
dation problems and

2. the evaluation of the system with synthetic and real-world data
sets.

The remainder of this paper is organized as follows: In the next
section we give an overview of our algorithmic approach. After-
wards, we present the implementation of the algorithms and show
evaluation results in greater detail. Finally, we discuss related re-
search and conclude the paper.

2 FOUNDATIONS AND ALGORITHM
In our previous work [17], we introduced the algorithm EntRecom,
which utilizes model-based diagnosis and in particular the ConDiag
algorithm [18], and on a method that applies Shannon’s information
entropy [23]. To be self-contained, we briefly recapitulate the under-
lying definitions and EntRecom. We first formalize the inconsistent
requirements problem by exploiting the concepts of Model-Based
Diagnosis (MBD) [1, 20] and constraint solving [2].

The inconsistent requirements problem requires information on
the item catalog (i.e., the knowledge-base of the recommendation
system) and the current customer’s requirements. Note that the
knowledge-base of the recommender may be consistent with the cus-
tomer’s requirements (i.e., the customer’s query) and an appropriate
number of recommendations can be offered. In this case, the recom-
mendation system shows the recommendations to the customer and
no further algorithms have to be applied. Otherwise, if no solutions
to the recommendation problem are available, then the minimal set
of requirements, which determined the inconsistency with the knowl-
edge base, have to be identified and consequently offered to the user
as explanation for not finding any recommendation. The user can in
this case adapt the requirement(s) (relax it/them). Here we borrow the
idea from MBD and introduce abnormal modes for the given require-
ments, i.e., we use Ab predicates stating whether a requirement i is
should be assumed valid (¬Abi) or not (Abi) in a particular context.
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The Ab values for the requirements are set by the model-based di-
agnosis algorithm so that the assumptions together with the require-
ments and the knowledge-base are consistent. In the following, we
define the inconsistent requirements problem and its solutions.

More formally, we stating the inconsistent requirements problem
as follows:

Definition 1 (Inconsistent Requirements Problem). Given a tuple
(KB,REQ) where KB denotes the knowledge base of the recom-
mender system, i.e., the item catalog, and REQ denotes the cus-
tomer requirements. The Inconsistent Requirements Problem arises
when KB together with REQ is inconsistent. In this case we are
interested in identifying those requirements that are responsible for
the inconsistency.

A solution or explanation to the inconsistent requirements prob-
lem can be easily formalized using the analogy with the definition of
diagnosis from Reiter [20]. We first introduce a modified representa-
tion of (KB,REQ) comprising (KBD, REQ) where KBD com-
prisesKB together with rules of the formAbR for each requirement
R in REQ. The solution to the Inconsistent Requirements Problem
can now be defined using the modified representation as follows:

Definition 2 (Inconsistent Requirements). Given a modified recom-
mendation model (KBD, REQ). A subset Γ ⊆ REQ is a valid set
of inconsistent requirements iff KBD ∪ {¬AbR|R ∈ REQ \ Γ} ∪
{AbR|R ∈ Γ} is satisfiable.

A set of inconsistent requirements Γ is minimal iff no other set
of inconsistent requirements Γ′ ⊂ Γ exists. A set of inconsistent
requirements Γ is minimal with respect to cardinality iff no other set
of inconsistent requirements Γ′ with |Γ′| < |Γ| exists. From here
on we assume minimal cardinality sets when using the term minimal
sets.

The second problem occurring during a recommendation session
is the availability of too large number of recommendations, which
have to be narrowed down to a reasonable number. The too many
recommendation problem can be solved again using ideas bor-
rowed from model-based diagnosis. In diagnosis, we have the similar
problem of coming up with too many diagnoses because of too less
observations known. The corresponding problem in case of recom-
mendation is that we do have far too less requirements from the user.
Hence, we have to ask the user about adding more information in
order to reduce the number of available solutions. In model-based
diagnosis Shannon’s information entropy [23] is used to come up
with observations and in our case requirements that should be known
in order to reduce the recommendations as fast as possible.

Algorithm 1 provides recommendations in the context of chatbots
making use of diagnosis and Shannon’s information entropy com-
putation. EntRecom converts the available knowledge into a corre-
sponding constraint model and checks its consistency. If the knowl-
edge is inconsistent, the algorithm tries to find a requirements that
can be retracted by the user in order to get rid of the inconsistency.
Afterwards, EntRecom searches for the best requirement to be set by
the user in order to reduce the number of solutions if necessary. The
algorithm stops when reaching a set of recommendations that has a
cardinality of less than n.

With the provide algorithms a chatbot for recommendations can
be build that is able to deal with inconsistent requirements as well as
missing requirements in a more or less straightforward way making
use of previously invented algorithms.

Algorithm 1 EntRecom(KBD, REQ, n)

Input: A modified knowledge base KBD , a set of customer
requirements REQ and the maximum number of recommendations
n
Output: All recommendations S

1: Generate the constraint model CM from KBD and REQ
2: Call CSolver(CM) to check consistency and store the result

in S
3: if S = ∅ then
4: Call MI REQ(CM, |REQ|) and store the inconsistent re-

quirements in IncReqs
5: Call askUser(IncReqs) and store the answer in

AdaptedReqs
6: CM = KB ∪ (REQ \ IncReqs ∪AdaptedReqs)
7: go to Step 2
8: end if
9: while |S| > n do

10: Call GetBestEntrAttr(AS) and store the result in a
11: AS = AS \ a
12: Call askUser(a) and store the answer in va
13: S = R (S, va))
14: end while
15: return S

3 IMPLEMENTATION AND EVALUATION

For the user, the interaction with the recommender system within
the chatbot starts, when he or she formulates a query for a search
within the domain. The natural language processing framework
Rasa2 parses this query and passes it on to the EntRecom-algorithm.
The recommender algorithm then searches a previously conducted
and preprocessed knowledge base. Depending on the satisfiability of
the generated constraint model, results are presented to the user. If
necessary the user is asked follow up questions regarding his or her
requirements until we have results to return to the user.

Figure 1: A Chatbot-Based Recommender as Bridge between User
Input and Results from a Database

When the query can be answered, EntRecom exits and the user
can continue interacting with the Rasa-based chatbot.

As mentioned before, we choose a tourism domain, searching for
a hotel to be more specific. The process of searching a hotel in an it-
erative conversation helps us to see the capabilities and shortcomings
of the algorithm.

2 see https://rasa.com/



3.1 Framework and Data Preprocessing

For our tests, we chose the community-curated data from Open Street
Maps (OSM). We use the python bindings for Microsofts’ Z3 frame-
work as a constraint solver. For language processing and basic inter-
action with the user, we utilize the Rasa framework. Rasa is used for
natural language understanding by extrating the users’ intend and re-
quirements but can also respond immediatly with an answer (without
calling EntRecom) when it detects the users’ intend to chitchat.

In a first step, we query the OSM-API for hotels in a predefined
region. The size of the region is a major factor for performance. Be-
cause of this, it is reasonable to let the user select a region on initial-
ization.

Figure 2: Data from Open Street Maps

To conduct our internal knowledge base, we process the exported
data set in the following way: As some attributes do not add human-
readable information or tend to mislead users, we have to filter them
out. This is especially necessary because some classes of attributes
have a severe impact on later steps in our recommender system. For
example, categories like ”fixme” (annotation from an OSM user)
would give the user no advantage in a real-world scenario and in this
case, would lead to unwanted recommendations. We use a whitelist-
filter for the attributes of every entry in the data set. Furthermore, not
every entry in the OSM data has the same fields, why we maintain a
list of all attributes in a data set. If an entry does not include a cer-
tain attribute, we add it with a value of False. This leaves us with a
”normalized” data set.

Figure 3: Preprocessed Data Set

After our preprocessing step, every entry in the dictionary has
the same number of attributes we add uniform clauses to our con-
straint model. An exemplary normalized clause looks like this:
(amenity = ”none” ∧ addr : city = ”Graz” ∧ name =
”ParkhotelGraz” ∧ cuisine = ”none” ∧ . . . ∧ smoking =
”isolated” ∧ wheelchair = ”limited” ∧ swimming − pool =
”none” ∧ stars = ”4” ∧ tourism = ”hotel”). Regarding data
types, we choose between two different approaches, when creating
the Z3 constraint model. The first one being data type selection for

every attribute in the domain and the second one being string trans-
lation for every value, regardless of the specific class of an attribute.
In our implementation, every attribute and value is translated to a
Z3 string. While this may result in slower runtimes, we ensure flex-
ibility, as data types may vary across attributes. Usually, the user is
asked to select a region of interest. For our tests, we use a data set
of a specific size. This is a very critical and, depending of the size
of the test set, time consuming step. Therefore, we try to do it only
once when the user initially specifies an area. This Z3 constraint
model, consisting of OR-connected uniform clauses of Z3 strings is
our main knwoledge base within EntRecom and shall be refered to
as kb and subsets therof as S in the remainder of this paper.

The first interaction the user has with our chatbot implementa-
tion is handled via the trained natural language understanding (NLU)
model within Rasa. If the user’s intent to search within the domain
”hotels”, our recommender is called via a webhook, and the param-
eters are passed over. This call to our internal API is the only inter-
action between EntRecom and the chatbot framework, Rasa, in our
case, which leads to very low coupling and a high degree of flexibil-
ity. The parameters represent the NLUs interpretation of the users’
query and give us our initial set of requirements.

3.2 Recommender Algorithm
In this section, we are describing the implementation of the previ-
ously introduced algorithm EntRecom.

Before the algorithm ready to use, we have to prepare our data set,
generate the constraint model and interpret the user’s intent. Then
we enter the EntRecom-implementation. As described before, if the
query is satisfiable for our knowledge base and the given maximum
number of results, we return our recommendations and exit EntRe-
com.A maximum of n hotels is presented to the user, we retrieved
from the knowledge base, with n representing a preselected maxi-
mum number of results.

Though, as stated in [17], we are confronted with two potential
problems at this point. Given a knowledge base kb, a maximum num-
ber of results n and a user-defined set of requirements REQ:

• We could get too many results to present in a meaningful way. In
this case, the function GetBestEntrAttr is called.

• We could get no results at all. In this scenario, we call the function
MiREQ.

3.2.1 GetBestEntrAttr

This part of the algorithm is called, when the query is satisfiable, but
the result does not lie within [n]. Therefore, we have to add further
constraints to our model. Because we want to occupy as little of the
user’s time as possible, we have to efficiently select additional con-
straints. This is done by choosing a category out of the domain which
best splits the current subset S of the data set. The criterion for our
selection is Shannon’s information entropy [22]:

H(X) = −
∑
i

P (xi)log(P (xi))

To apply entropy as a measure, we have to restructure the
data slightly. AS represents this restructured version of S, which
maps every attribute in the domain to all values of its occur-
rences in S. This is realized with python dictionaries of the form:
”attribute1” : [”value1”, ”value2”], ”attribute2” : [”value1”], ....
After computing the number of occurrences of every value for a



(a) SAT
(b) MiREQ (c) GetBestEntrAttr

Figure 4: User Interface

specific attribute, we now calculate the entropy, for every attribute.
The attribute with the highest entropy splits the data set S most
effectively. As mentioned above, some attributes may lead to
unwanted recommendations. One reason for this is the appearance of
seemingly random values when looked at them lacking context. This
could be attributes internally used within OSM, for instance. Fields
like ”source” often have seemingly random values like ”survey” or
”Kleine Zeitung”. The same pseudo-randomness can be observed
with attributes like ”housenumber” which can take an arbitrary
integer value. Those values appear in many data points and, when
observed isolated, do not contribute any information with regard
to splitting the data set. When computing the information entropy
based on attributes lacking spatial ordering or clustering properties,
we are not dividing the data set strategically but randomly. This is
why we chose to exclude them from our knowledge base beforehand.
If several attributes occur with equal entropies in the data set, we
can randomly select one of these categories, as all of them split the
data equally well. In the last step, the user is asked for selecting one
value for this category. The user’s selection is added to the set of
requirements and EntRecom gets called again.

3.2.2 MiREQ

This part of the algorithm is called, when the query is not satisfiable
for our knowledge base KB with the user-defined set of require-
mentsREQ. Following [17], we state the Inconsistent Requirements
Problem. As a counter measurement to the Inconsistent Requirement
Problem, we have to soften the query to get results. To achieve this,
we have to find inconsistencies in REQ, being a subset Γ thereof. ∀
inconsistent subsets Γ,KB∪{¬AbR | R ∈ REQ\Γ}∪{AbR|R ∈
Γ} is satisfiable, with AB being a Boolean variable for selecting
and deselecting a requirement R to be considered [18] This, we im-
plemented by checking on models with combinatoric variations of
subsets of REQ. This means, that we evaluate a constraint model

consisting of our knowledge base and requirements with varying val-
ues for AB. Given the cardinality of Γ, we iterate over all possible
distributions ofAB with |REQ|− |Γ| considered requirements. Be-
cause we want to preserve as much of the user’s initial query as pos-
sible, we want to find a minimal set of inconsistent constraints. As
proposed in [17], to find such a minimal set of inconsistencies, we
have to obtain a constraint model that is satisfiable for the smallest
cardinality of Γ possible. For this, we repeat the process of check-
ing on combinatoric variations of subsets, with increasing numbers
of assumed inconsistencies, starting with one. This we do until we
reach |REQ|, in which case there are no consistent requirements.
When a satisfiable constraint model is found, we are able to retrieve
all inconsistent requirements in the form of all unconsidered require-
ments. With this subset ofREQ, we return fromMiREQ. After the
MiREQ-function returns, we ask the user for his or her preference
for dropping one of his or her previously defined requirements within
the minimal set of inconsistencies. While the current implementa-
tions assure us to find minimal sets of inconsistent requirements, in
future implementations, we hope to be able to make use of the unsat-
core functionality of Z3 for this task. This is expected to significantly
improve performance.

3.3 Evaluation

We developed our tests concentrating on the algorithm itself and the
data structures needed for execution. The data preprocessing was not
in the focus of this test. For our tests with synthetic test data this is
especially true, as they use a adapted version of EntRecom without
user interaction, as depicted in Figure 5. The goal of our experiments
is to show potentials for optimizations of the implementation, as well
as proofing the versatility of the algorithm proposed in [17].

In our tests, we used both, synthetic and real-world data. For
benchmarking and basic experiments, we mainly used synthesized
data, while real-world data, specifically from Open Street Maps is



Figure 5: Focus of Tests with Synthetic Data

important to ensure the flexibility and robustness of the implementa-
tion in real-world scenarios.

3.3.1 Real-World Test Data

As described before, we use data from Open Street Maps for our
tests. First, we want to observe, how the algorithm copes on real-
world data and which degree of data preprocessing and filtering of
the data is necessary. Furthermore, we developed the rules for gener-
ating our synthetic test data based on the exported data from OSM.

For this part of our evaluation, we empirically tested the algorithm
for usable results as well as automated tests for exhaustive testing on
the data.

3.3.2 Synthetic Test Data

Our modus operandi for generating and conducting tests with syn-
thetic data can be described as follows:

1.) Definition of attribute classes and generation of data sets
2.) Definition of requirement sets and classifying them within a test-

ing matrix
3.) Performing speed tests following the testing matrix

To evaluate our results for the performance test, we order tests
within a three-dimensional testing matrix. The first axis of this ma-
trix represents the size of the test set. The second axis represents the
number of attributes and the last axis represents the number of al-
lowed results n. The value at every position in the matrix represents
the called subfunction within our recommender algorithm.

We randomly generated data sets of different sizes and with dif-
ferent numbers of attributes for our performance tests. Because data
within the domains ”hotels” and ”cars”, have several distinct proper-
ties, we set up our test data following certain rules. To achieve this,
we categorized the attributes dependent on the data type of their cor-
responding values. Furthermore, we added complementary classes
based on certain characteristics of the domain.

This results in the following basic classes of attributes based on
their data type:

a) Boolean values
b) Integer values
c) Float values
d) String values

Additionally, we added the following supplementary classes:

e) Often reappearing parts in string values (e.g. names)
f) Frequently recurring string values (e.g. city, manufacturer)
g) Restricted numbers (e.g. star-rating, number of seats)
h) Dates (e.g. registration date)

h) Ranges (e.g. distance-to-the-center, price-category)

ad a) Boolean values appear often in real-world data and are easy to
process. This class represents attributes like internet-access or
payment-credit-card in the domain tourism and esp or abs in the
automotive domain.

ad b) Arbitrary integer values appear often as counter variables like vis-
itors, likes or 5-star-reviews

ad c) Floating-point numbers occur within both domains, tourism, and
cars in various forms. This class covers all attributes in the context
of distance, like distance-to-the-center for a hotel or mileage for
a car. It also stands for location attributes given in coordinates
(longitude, latitude) and mean values like user-rating.

ad d) Strings are very versatile and therefore used in many ways in dif-
ferent sources. In many cases, strings contain informational value
beyond what a number may cover. But often strings are used in
places, where the informative content is not higher than number-
valued attributes and could be represented with Boolean values or
numbers instead. This is true for several classes of attributes like
stars with values of ”4-star”.

ad e) The name attribute is always a string and does not have to but is
likely to include a domain-specific term in its value. For hotels,
this would be ”Hotel” or a synonym thereof. Because of these re-
curring terms and the omnipresence over all domain-specific data
sources, we treat this attribute separately from the more general
string class. When generating data sets, we introduce these terms
into our samples regularly.

ad f) Fields like city or manufacturer contain frequently reappearing
values, which makes it special regarding information entropy and
therefore interesting to us.

ad g) Stars of a hotel can be represented with 1 to 5, which makes a
reappearance in this category very probable.

ad h) As we want to simplify the selection process, we reduce the date
to the year. This results in an integer value often constrained by an
upper boundary being the current year and a case dependent lower
boundary. Depending on the specific attribute, these values may
recur frequently.

ad i) Ranges are special because they consist not only of one, but two
boundary values. For simplification reasons, we categorize ranges
within the relative classes: low, med and high. Of course, these
range classes are also very likely to reoccur.

Our synthetic data is randomly generated with respect to those
classes of attributes and with varying occurrences of the different
types.

3.4 Results
The results are splited in two parts. First, we discuss the results of
the synthetic data, followed by the proof of concept results with real-
world data.

Using the synthetic data, we define sets of requirements to test
the algorithm on. These sets belong to one of the following classes
relative to the knowledge base e.g. the test data and the given n, they
are tested with:

i) Satisfiable with n or less results. This leads to a direct return from
the EntRecom-algorithm, presenting us the results S the con-
straint solver found.

ii) Satisfiable with more than n results. In this case, we have to call
GetBestEntrAttr, which calculates entropies for all attributes.
Another interaction with the algorithm is needed, as we have to



select a value for the attribute with the highest informational con-
tent.

iii) Not satisfiable. In this case, we have to call MiREQ which iter-
atively chooses subsets of REQ until it finds the largest satisfiable
subset. Its complement is the set of inconsistent requirements δs.
Again, another interaction through AskUser is necessary. Now
we have to select a requirement out of δs we want to keep in REQ
the other constraints are dropped.

To classify the requirement sets for every test set according to the
three classes from above, we use an adapted version of EntRecom,
which does not return results or perform any recursive calls. The pur-
pose of this classification is, to be able to identify test results with
regard to the sub-functions called within EntRecom. The class of
REQ - either i, ii, or iii - for a certain test configuration represents
the value of the three-dimensional testing matrix.

After classification, we perform our tests on the generated data.
A typical test-scenario starts with the users first interaction with the
chatbot environment, which, in turn, results in setting up the knowl-
edge base. Regularly the user is asked to select a region of interest.
For our tests, we use a data set of a specific size. Then a set of re-
quirements and a maximum for the expected results are chosen. We
now perform a test for every class in the testing matrix and get results
in the form of execution times.

For a fixed n of 5 and tests performed with one to five re-
quirements in the sets, we plot the function calls of MiREQ and
GetBestEntrAttr on increasingly sized test sets. In case, we ob-
tain a result for our query which lies within n, our constraint solver
CSolver is the only function call made.

Figure 6: Classification Based on Function Calls within EntRecom

As you see, the function calls ofMiREQ decrease, while the calls
of GetBestEntrAttr increase for larger test sets. While this basic
assumption holds for real data, the impact is not as drastic, as users
tend to perform queries with less than five requirements initially.

The algorithm was also used with real-world data. Therefore, we
inserted the data from OSM into the knowledge base. We interact
with the textual chat-like web interface in the intended way and get
the correct results from the algorithm. The algorithm returned a result
set within a few iterations and these results fit to the user specifica-
tion.

These experiments show also that there is a problem of relevance
of attributes. The attributes, which have a high entropy to reduce the
result set, are not nessesarily relevant for users. Our tests show that
i.e. the attribute wheelchair, which is part of accessibility, has a high
entropy but will not be interesting for a large amount of users. This
issue has to be addressed in an upcoming version of the algorithm.

4 RELATED WORK

The application of model-based reasoning, and especially model-
based diagnosis, in the field of recommender systems is not novel.
For example, papers like [4, 11, 19] compute the minimal sets of
faulty requirements. These requirements should be changed in or-
der to find a solution. In these papers, the authors rely on the ex-
istence of minimal conflict sets computing the diagnosis for incon-
sistent requirements. Felfernig et al. [4] present an algorithm that
calculates personalized repairs for inconsistent requirements. The al-
gorithm combines concepts of MBD with a collaborative problem
solving approach to improve the quality of repairs in terms of pre-
diction accuracy. In [19], the concept of representative explanations
is introduced. This concept follows the idea of generating diversity
in alternative diagnoses informally, constraints that occur in con-
flicts should as well be included in diagnoses presented to the user.
Jannach [11] proposes to determine preferred conflicts ”on demand”
and use a general-purpose and fast conflict detection algorithm for
this task, instead of computing all minimal conflicts within the user
requirements in advance.

Papers that deal with the integration of diagnosis and constraint
solving are [3] and [24, 25], who proposed a diagnosis algorithm for
tree-structured models. The approach is generally applicable due to
the fact that all general constraint models can be converted into an
equivalent tree-structured model using decomposition methods, e.g.,
hyper tree decomposition [7, 8]. [26] provides more details regarding
the coupling of decomposition methods and the diagnosis algorithms
for tree-structured models. In addition to that, [21] generalized the
algorithms of [3] and [24]. In [15] the authors also propose the use of
constraints for diagnosis where conflicts are used to drive the com-
putation. In [6], which is maybe the earliest work that describes the
use of constraints for diagnosis, the authors introduce the use of con-
straints for computing conflicts under the correctness assumptions.
For this purpose they developed the concept of constraint propaga-
tion. Despite of the fact that all of these algorithms use constraints for
modeling, they mainly focus on the integration of constraint solving
for conflict generation, which is different to our approach. For pre-
senting recommendation tasks as constraint satisfaction problem, we
refer to [12].

Human-chatbot communication represents a broad domain. It cov-
ers technical aspects as well as psychological and human perspec-
tives. Contributions like [9, 30] show several ways of implementing
chatbots in different domains. Wallace [30] demonstrates an artificial
intelligence robot based on a natural language interface (A.L.I.C.E.)
that extends ELIZA [31], which is based on an experiment of Alan
M. Turing in 1950 [29]. This work describes how to create a robot
personality using AIML, an artificial intelligence modelling lan-
guage, to pretend intelligence and self-awareness.

Sun et al. [27] introduced a conversational recommendation sys-
tem based on unsupervised learning techniques. The bot was trained
by successful order conversations between user and real human
agents.

Papers like [5, 10, 13, 32] address the topics user acceptance and
experience. In [32] a pre-study shows that users infer the authentic-
ity of a chat agent by two different categories of cues: agent-related
cues and conversational-related cues. To get an optimal conversa-
tional result, the bot should provide a human-like interaction. Ques-
tions of conversational UX design raised by [5] and [16] demonstrate
the need to rethink user interaction at all.

The topic of recommender systems with conversational interfaces
is shown in [14], where an adaptive recommendation strategy was



shown based on reinforcement learning methods. In the paper [28],
the authors proposed a deep reinforcment learning framework to
build personalized conversational recommendation agents. In this
work, a recommendation model trained from conversational sessions
and rankings is also presented.

5 CONCLUSION AND FUTURE WORK
In this paper, we showed an implementation and its evaluation of En-
tRecomm, an algorithm using model-based diagnosis and Shanon’s
information entropy. In our tests, we used both, synthetic and real-
world data. For benchmarking and basic experiments, we mainly
used synthesized data, while real-world data, specifically from Open
Street Maps is important to ensure the flexibility and robustness of
the implementation in real-world scenarios. We also showed the per-
formance for different data sets and also revealed open issues, like
the relevance of chosen attributes, which is already a starting point
for future work. Another important step will be a user study to eva-
lute the acceptance of the algorithm.
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