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Abstract—The X-ray has been adopted and used for various
purposes including medical diagnostics. To remove noise created
by new low dose X-ray imaging procedures and reduce medical
image size, X-ray image reconstruction and lossless compression
using deep neural networks are being researched. To enable this,
image similarity metrics capable of performing well on X-ray
images must be used. In this paper, the requirements for medical
X-ray similarity metrics are defined. A new similarity metric is
proposed taking into account the quality of structures within
different intensity levels. An analysis is given comparing the
proposed and other currently known metrics performance on
real X-ray images in simulated scenarios.
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I. INTRODUCTION

The X-ray ever since its inception has been widely adopted
and used for various purposes. One of the key uses of X-
ray imaging is in medical diagnostics. It allows for a non-
invasive method of diagnosing various bone structure defects,
infections, arthritis, and most cancers [1]–[3].

Despite wide usage and rapid technological advances the
ionizing radiation emitted during X-ray imaging procedures
creates real health risks for patients [4]–[6]. Efforts have been
made to reduce the risks associated with radiation exposure by
creating new procedures for performing X-ray imaging. These
procedures (commonly referred to as low-dose) use lower
voltage or amperage settings to reduce the amount of radiation
emitted thus reducing the risks [7]. Unfortunately, using these
types of procedures results in images having artifacts and
noises which can reduce diagnostic suitability [8]. There are
cases where it might not be necessary to remove the noises in
order to give an accurate diagnosis [9]. In most cases, however,
it is imperative to remove or reduce the amount of noise on
an X-ray image. Conventional approaches that use defined
properties of noise distribution do not yield satisfactory results
[10], [11].

There have been some successful attempts in using deep
neural networks for image reconstruction tasks, outperforming
other approaches in removing various noises from images
[12]–[14]. There have also been attempts in using deep neural

networks for lossless image compression, to make storing
images and using them for calculation more efficient [15].
Furthermore, a significant amount of research has recently
been conducted on finding ways of improving X-ray imaging
procedures, especially on automated means of disease or
abnormality detection [2], [3], [16].

One of the key factors to the accuracy and effectiveness
of a deep neural network is the objective function. In image
reconstruction and compression image similarity metrics are
used as objective functions. They compare two images with
each other and produce a scalar result denoting their degree
of difference [17]. The similarity metric defines what image
properties are being evaluated so the selection of an effective
metric is crucial.

In this paper a similarity metric for medical X-ray images
domain is proposed and compared with other known metrics.
In section II essential properties of X-ray images in the
medical domain and requirements for a similarity metric are
defined. An overview of currently used metrics is made in
section III and the definition of the proposed metric is made
in section IV. The analysis comparing the performance of the
metrics is made in section V.

II. REQUIREMENTS FOR MEDICAL X-RAY IMAGE
SIMILARITY METRICS

Medical X-ray images are created and used to enable
trained radiologists to analyse the human body, determine and
diagnose various irregularities and illnesses. X-ray images can
be done over any part of the human body and as such contain
various structures including bones, tissue, and organs [1], [2].
Any assessment of X-ray image similarity or quality must take
into account properties of the images which enable them to
be used for accurate and reliable diagnosis.

Through analysis of literature and working with trained
specialists in the field of radiography several important re-
quirements for medical X-ray image similarity metrics have
been identified:
R1 The metric must detect emerging noises and artifacts

from images created with low dose X-ray procedures. As
was previously stated, in most cases to enable low dose
procedures, it is important to detect and remove noises
from the created images as they hinder diagnosis [8], [13].
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R2 The metric must detect perceptual geometric distortions.
They can appear on images during imaging, reconstruc-
tion or decompression. From a radiologists perspective
the distortions may cause difficulties or even render the
images completely unusable for diagnostics [18].

R3 The metric must take into account the discrepancies
of images within specific ranges of brightness intensity
levels. Due to the nature of the X-ray, images contain
various human body structures including bones, tissue,
organs. They are captured as areas of different brightness
intensities [1]–[3]. In this paper we will refer to them
as sub-levels. Most image quality assessment approaches
attempt to evaluate the broader perceptual view of image
quality and focus on more visible areas. In medical X-
ray images, all structures captured in these images have
significant value and greatly contribute to diagnosis [13].
Taking into account reconstruction or decompression ac-
curacy of not only the whole picture but also structures
within different intensity ranges is critical.

The proposed metric (in section IV) and following experi-
ments (in section V) will take these properties into account.

III. SELECTED METRICS

Research into image similarity metrics (in some cases re-
ferred to as image quality assessment) has witnessed attention
and notable progress over the past decades [19]. Image quality
assessment is essential in fields that use image processing [20].
The majority of metrics used evaluate the similarity of the
distorted image use the complete reference image [19]. In this
paper 3 selected general purpose similarity metrics which are
potentially usable in the X-ray image domain will be discussed
and compared. It is important to note, that for the rest of the
paper metric definitions will be used, where metric value 1
means the compared images are equal, and value 0, means
they are completely dissimilar.

A. Mean squared error (MSE)

Mean squared error is considered to be one of the most
simple and straight-forward similarity metrics. It is computed
by averaging the intensity differences of the two compared
images [17]. MSE is known for being quite mathematically
convenient for optimization purposes. Although the metric
does not correlate well with perceived visual quality [21].
Despite its flaws it still remains widely used for many image
processing tasks. For the purposes of this paper, this metrics’
performance will be compared to others during analysis. The
following normalized form of the metric will be used:

MSE∗(X,Y ) = 1− 1

n

n∑
i=1

(Xi − Yi)2 / M2 (1)

Here X and Y are compared images, M - maximal pixel
intensity, Xi and Yi - a concrete pixel in the image, n - total
number of pixels in image.

B. Structural similarity index (SSIM)

As a response to unsatisfactory perceived visual quality
results of MSE and similar metrics a new approach was
proposed to construct new similarity metrics. It was based
on the idea that images are highly structured and rather
than evaluating pixels individually (like in MSE), groups of
spatially proximate and related pixels should be taken into
account together in order to achieve more accurate repre-
sentation of perceivable quality [17]. This is based on the
assumption that the human visual system is adapted to identify
various structures within field of sight and effectively spot any
distortions affecting them [17], [22]. A well-known metric
based on these principles is the Structural Similarity Index
(SSIM) [23]. SSIM metric calculates in account three key
features of the images: luminance changes, contrast changes
and structural changes [17]. In this paper it will be defined
and used in its standard form:

SSIM∗(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(2)

SSIM has seen wide usage for many image processing
tasks [23]. It has served as inspiration and basis for many
other similarity metrics supplementing additional features to
the standard metric [24]–[28].

C. Weighted SSIM (wSSIM)

Weighted SSIM is a general-purpose modification of the
SSIM metric mentioned in sub-section III-B. It was created to
be used as an objective function in Deep neural networks. It
is a composition of SSIM and traditional L1 loss. Intuitively,
SSIM gives the perceptual image assessment and L1 decreases
the metric value for more distorted images and increases for
less distorted images [29]. The authors claimed that if used
for training, it would put more emphasis on pairs which are
performing worse and increase training speed and accuracy.
In this paper L1 will be defined in its normalized form and
wSSIM will be defined in the following form:

L∗1(X,Y ) = 1− |X − Y |L1
/ (M ·N) (3)

wSSIM∗(X,Y ) = 1− SSIM∗ · (1− L∗1) (4)

Here X and Y are compared images, N - number of pixels
in the images, M - maximal pixel intensity.

IV. PROPOSED SLSSIM METRIC

Substantial research regarding using Deep neural networks
as a method for medical image reconstruction and processing
is very recent [30], [31]. Although a significant amount of
metrics have been developed to suit different domains, there
is no definitive similarity metric for comparing medical X-ray
images.

As mentioned in section II a metric for medical X-ray
image similarity assessment must take into account specific
properties of the images. Also, it has become clear from image
quality measurement research that handcrafting and tailoring
a similarity metric by combining several known metrics can
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Fig. 1. Results with Poisson Gauss noise augmentation (left), additive Gauss noise augmentation (right)

yield significantly better performance than using any single
known metric [32], [34].

In this paper a similarity metric for assessing medical X-
ray image similarity is proposed. It is called the sub-level
structural similarity index (or SLSSIM). As its name implies
it is based on the widely used structural similarity index (or
SSIM). Its main differentiating feature is the consideration of
human body structures appearing within different sub-levels
of the image (as mentioned in requirement R3). It is achieved
by calculating SSIM values on discrete sub-levels and not the
entire image. This should enable more strict comparison of
the structures appearing within the sub-levels. In this paper
sub-levels are mathematically defined as:

X(i), Y (i) ∈
[ iM ′
k
,
(i+ 1)M ′

k

)
(5)

Here X and Y are images, X(i), Y (i) are sub-levels of the
images, N - number of pixels in image, M ′ - amount of
different values that a pixel can have, k - is the number of
compared discrete sub-levels. The mathematical definition of
SLSSIM is:

SLSSIM = k+1

√√√√(1− L∗1) ·
k∏

i=0

(SSIM∗(X(i), Y (i))) (6)

SLSSIM is a root of a product where the members are
normalized L1 calculated from the entire image and SSIM
calculated from defined sub-levels. Here, L1 is used the same
way as in subsection III-C, to decrease the metric value further
if the image is more distorted and. Also, as all of the product
members have values in interval [0; 1] the root is used to
prevent a steep downward gradient of the metric. We will be
using 8 sub-levels (k = 8) for metrics performance analysis.

V. METRICS ANALYSIS

Analysis has been carried out to evaluate performance of the
selected metrics in real-life scenarios. Tests were conducted

using real X-ray images from openly available medical X-ray
image data sets. The data sets used for analysis were:

1) RSNA pediatric image set created by the Radiological
society of North America, which contains hand X-ray
images [35];

2) NIH image set created by the National Institute of Health
(of the United States of America) which contains chest
X-ray images [36];

3) MURA musculoskeletal image set created by Stanford
University which contains elbow, forearm, hand and
shoulder X-ray images [37];

For the analysis 3000 images were selected from the data sets
(1000 from each) in a random order. All medical images within
the data sets were gray-scale, with pixel value ranging within
the interval [0; 255].

Image augmentations have been used to simulate noises
and distortions in the X-ray images to simulate real-life
medical X-ray imaging scenarios. To analyse performance
values of metrics were calculated on image pairs that contained
reference image – unmodified image from a data set, and
augmented image – created from reference image by applying
an augmentation. Similarity between the two images was
evaluated using the selected and proposed similarity metrics
from sections III and IV. The results were aggregated by
taking the mean metric value from all the images for each
augmentation level.

A. Noise detection results

As defined by requirement R1 in section II a medical X-
ray image similarity metric must detect emerging noises. Two
image augmentations simulating real life scenarios have been
selected to generate augmented images for testing:
• Poisson-Gauss noise augmentation PG(a, b) – represents

artifacts and noises emerging in images obtained via
computed tomography X-ray imaging when using X-ray
sensors in low dosage configuration [8]. The augmented
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Fig. 2. Results with rotation augmentation (left), Y-axis translation augmentation (right)

image was generated using parameters: a = 31 and
b = 0.05k, k ∈ [0; 20], k ∈ Z. Higher b values result
in more noise in the image. There are confirmed results
stating that noises generated with parameter b ≈ 0.1 can
occur in low dose imaging [8].

• Additive Gauss noise augmentation N (µ, σ) – repre-
sents general noises and artifacts that can appear in X-
ray images. Some research points to its applicability in
simulating noises emerging from low dose imaging as
well [38]. The augmented image was generated using
parameters: µ = 0, σ ∈ [0; 20], σ ∈ Z. Higher σ values
result in more noise in the image. Visually, the noise
becomes noticeable at σ ≈ 5.

1) Poisson Gauss noise detection results: On the left side of
figure 1 similarity metrics ability to detect emerging Poisson-
Gauss noise is observed. Metrics L∗1, MSE∗, wSSIM∗ do
not detect the noise even when the noise parameter b is high
(images are highly disrupted). Whereas, SSIM∗ metric and
the proposed metric SLSSIM perform well. When noise
parameter b = 0.1, metric values SLSSIM ≈ 0.78 and
SSIM∗ ≈ 0.66. These results are acceptable, as visually the
noise should still allow for accurate diagnosis.

2) Additive Gauss noise detection results: On the right side
of figure 1 similarity metrics performance against emerging
additive Gauss noise is witnessed. Similarly to the previous
results, metrics L∗1, MSE∗, wSSIM∗ do not detect the noise
well, the resulting values do not drop below 0.94. However,
in this case the difference between the proposed SLSSIM
metric and SSIM∗ is higher. When noise parameter σ = 5,
metric values SLSSIM ≈ 0.84 and SSIM∗ ≈ 0.76.
Although these values are still acceptable, the rate at which
SLSSIM value decreases as the noise level rises is not as
representative of the added disruptions as the SSIM∗. It can
be stated that SSIM is slightly more accurate in detecting
additive Gauss noise.

B. Geometric distortion detection results

As defined by requirement R2 in section II a medical X-ray
image similarity metric must also detect perceptual geometric
distortions. Two widely used image augmentations have been
selected to simulate geometric transformations and generate
augmented images for testing:
• Translation augmentation – used to evaluate general met-

ric robustness against translation (shifting of the image).
Theoretically, translation can occur during reconstruction
or decompression. The augmented image was generated
by translating the reference image on the Y axis by y
pixels, where values y = {−30,−28, ..., 26, 28, 30}

• Rotation augmentation – also used to evaluate general
metric robustness. The augmented image was generated
by rotating the reference image by r degrees, where
values r = {−30,−28, ..., 26, 28, 30}

1) Rotation augmentation detection results: On the left
side of figure 2 similarity metrics ability to detect rotations
is observed. As an emerging pattern, metrics L∗1, MSE∗,
wSSIM∗ do not detect the distortions even when the degree
of rotation is very high. SSIM∗ and SLSSIM still perform
well, with SSIM∗ once again being slightly more sensitive
to the level of distortion.

2) Translation augmentation detection results: On the right
side of figure 1 similarity metrics performance in detecting
translations is observed. Once again, metrics L∗1, MSE∗,
wSSIM∗ do not detect distortions well and metrics SSIM∗,
SLSSIM∗ do so.

C. Analysis results

As observed in the tests L∗1, MSE∗, wSSIM∗ metrics
are not suitable for accurately detecting noises or geometric
transformations in medical X-ray images. While tests show
that SSIM∗ is more sensitive to additive Gauss noise, but
SLSSIM has an advantage in being the only metric that
specifically measures discrepancies in sub-levels of the image.
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Fig. 3. Sample chest X-ray image from NIH data set (left), same image distorted with Poisson Gauss noise (right)

Fig. 4. Sample wrist X-ray image from MURA data set (left), image distorted with Poisson Gauss noise (center), visualisation of sub-level range [64; 127]
of distorted image (right)

Both SSIM∗ and SLSSIM metrics are potentially suitable
for use with medical X-ray images.

VI. SAMPLES OF METRICS BEHAVIOUR ON X-RAY IMAGES

Sample images from the data sets have been displayed to
better visualise the impact that augmentations have on the
images. Also, metric values are given for each image pair.

In figure 3 a reference X-Ray image from NIH chest X-ray
image data set can be seen on the left. An augmented image
distorted by Poisson-Gaussian noise, a = 31, b = 0.08 can be

seen on the right. It simulates the effect that low dose imaging
would have on the image [8]. The metric values calculated
from reference and augmented images are: MSE∗ = 0.99,
L∗1 = 0.93, SSIM∗ = 0.10, wSSIM∗ = 0.93 and
SLSSIM = 0.36.

Similarly, in figure 4 a reference X-Ray image from the
MURA musculoskeletal X-ray image data set can be seen on
the left. An augmented image distorted by Poisson-Gaussian
noise, with same parameters as before can be seen in the
center. The image on the right represents a visualisation of
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the augmented image sub-level of intensity range [64; 127]. In
this particular case, this sub-level represents the bone structure
from the image, with tissue and other matter being barely
represented. The metric values calculated from reference and
augmented images are: MSE∗ = 0.98, L∗1 = 0.88, SSIM∗ =
0.08, wSSIM∗ = 0.89 and SLSSIM = 0.27. It is important
to note that the metrics values taken from images seen in
figures 3 and 4 correspond with the results of the analysis
in section V.

VII. CONCLUSIONS

Although there are many general purpose image similarity
metrics used in various domains, only a few of them are
suitable for use in comparing medical X-ray images. Based
on the analysis performed on multiple medical X-ray image
data sets and using different augmentations, L∗1, MSE∗,
wSSIM∗ metrics are ineffective in this domain as metric
values never drop below 0.8 even when significant distortions
are applied. SSIM∗ and the proposed SLSSIM can be used
to effectively compare X-ray images as both metrics’ value
is much lower when comparing heavily distorted images, in
some cases going below 0.3. Both metrics perform similarly
in tested cases. Unlike SSIM∗, SLSSIM takes into account
differences between human body structures in the images,
which should allow diagnosticians to make more accurate
diagnoses. The proposed SLSSIM can be used as a basis of
an objective function in medical X-ray image reconstruction
or compression tasks.
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