CEUR-WS.org/Vol-2470/p3.pdf

Impact of manipulation on initial population in
heuristics

Alicja Winnicka
Institute of Mathematics
Silesian University of Technology
Kaszubska 23, 44-100 Gliwice, Poland
Email: Alicja.Lidia.Winnicka@gmail.com

Abstract—The optimization problem is important due to prac-
tical use in various areas of our lives. Unfortunately, quite often
there is a situation that we need to find the minimum values
with certain criteria. Finding a solution using a classic approach
is impossible to apply, which is due to an infinite number of
solutions. That is why heuristic algorithms are used to find the
optimal solution in a finite time. In this paper we propose the idea
of manipulating the initial population due to better distribution
of individuals in the whole space. The proposed solution has been
described, tested and discussed.

I. INTRODUCTION

Optimization algorithms find great practical use in various
areas of our lives. Designing a construction such as a house
requires an ideal weight distribution on the columns. From a
mathematical point of view, the pressure, length and width
of walls or columns can be described with the help of
several equations, where the unknown value will depend on
all elements. However, finding the best values to make this
construction also as cheap as possible is quite a complicated
problem. For this purpose, various algorithms are used that
allow finding solutions that meet all criteria.

However, the problem is to search for these values. Quite
often the set of values is an infinite one. And this prevents
the use of iterative algorithms. These types of problems have
contributed to the creation of heuristics, ie methods that do
not guarantee ideal (and sometimes even correct) solutions in a
finite period of time. Although, a large number of optimization
problems are possible to solve using them.

The development of heuristics is driven by practical use.
This is particularly important in the methods of artificial
intelligence, where training the classifier occurs by minimizing
weights in order to get the least error [1], [2] or the op-
timization used in the operation of various systems [3]-[6].
Another important element is the optimization in smart grids
and microgrids [7]-[9]. In this paper, we want to show how
the manipulation of the initial distribution of individuals in the
population depends on two classic heuristic algorithms.

II. OPTIMIZATION PROBLEM

The optimization problem is understood as finding global
extremes for a specific function f(x) : R® — R for a

(©2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

given points x = (x9,%1,...,Tn-1), ¢; € (L;, R;) for
i =0,1,...,n — 1. In the case of minimization problem, it
can be formulated as

Minimize f(x)
g(x) =0 ey
Li<z <R,

subject to

where ¢(-) is inequality constraint.

III. CUCKOO SEARCH ALGORITHM

Cuckoo Serch Algorithm (CSA) is one of the heuristic
algorithms based on living creatures — in this case on cuckoos
[10]-[12]. After observation of these birds, people noticed, that
cuckoos have specific way to hatch their eggs. They actually
do not hatch them by themselves, but search another bird’s
nests to leave eggs there. In that case, they need to find the
nest whose host does not recgnize unfamiliar egg.

The behaviour of these birds inspired to extend minimiza-
tion algorithm. CSA assumes that cuckoo is a point X =
(zo,...,Tn—1) on the n-dimension solution space. Of course,
modeling the natural life of these creatures is impossible, so
it is simplified due to the following points

« the size of population is constant in all iterations,

o each cuckoo can lay only one egg per iteration,

« cuckoo is identified with egg,

e host may detect unfamiliar egg with some propability,

and in that case when egg is found, the cuckoo has to
look for new place in the solution space.

At the beginning of algorithm, the population is created.
Each cuckoo is placed on the solution space in random way.
In each iteration, each cuckoo performs two actions. The first
is a flight to another place which is modeled using Levy’s
equation (called Levy’s flight) defined as

77 67277(}(7()
NV
In the above formula ¢,n € (0,1) are coefficient. Using this

formula, the cuckoo’s movement is done using the following
equation

L(x,¢n) =)

x =x=+ L(x,(,7n). 3)

The second step is host decision because after the cuckoo
flight, her egg is tossed to the nest. In fact, cuckoos can mask

the tossed egg to make it look like other ones — the probability
of detection is minimized. Modeling this phenomenon involves
defining a threshold value =, with respect to which the egg will
be detected. For random probability £ € (0,1) the following
condition is checked

_)JE>E
H(X)—{ESE
“4)

In the case when the egg is removed from the nest, a new
position is choosen for this cuckoo (in random way) — this
action guarantees a constant size of the population. The
algorithm is executed to satisfy a stop condition, which is most
often the number of iteration in the algorithm. At the end, the
best cuckoo is returned, which has the smallest or largest value
of fitness function in the entire population (depending on the
optimization problem being considered).

the egg remains in the nest

the egg is removed from the nest

Data: number of iterations ¢, number of cuckoos k,
fintess function f(-), the solution space, threshold
value =

Result: The best cuckoos

Start;

Generate a population of k cuckoos in random way in

solution space;

1:=0;
while i <t do
k=0;

while j < k do
Change the position of j-th cuckoo using Eq. (2);
Choose ¢ € (0, 1) in random way;
if £ > = then
‘ Generate new position for j-th cuckoo;
end
end

end
Return cuckoo with the best fitness value f(-);
Stop;

Algorithm 1: Cuckoo Search Algorithm.

IV. POLAR BEAR ALGORITHM

Another heuristic algorithm is inspired by polar bear’s
behavior during hunting [13]. Polar bear must find the prey
and if he doesn’t find anything, he must use the ice floak as a
way to move a certain distance. He uses it to drift to another
location, where possibly he will find the prey (especially
seals).

The basis of this algorithm are similar to the CSA, we have
a population of k bears, where each of them can be represented
as point x = (xo, x1, ..., T,—1) in some solution space. At the
beginning, an initial population is created with one difference
— only 75% of individuals are generated, the remaining 25%
depend on Arctic conditions and reproduction.

Each bear moves only if the new position is better than the
current one in relation to the fitness function f(-). It can be
defined as the following equation

() = () + sign () o 47, ®

where « is a random number in (0,1), w is the distance
between two spatial coordinates and v is a random value in the
range of (0, w). The distance is defined using simple Euclidean
metric between two points and described as

n—1 2

(600, 09) = |3 ()@ ~ (20)9)

(6)

Polar bears do not hunt only on the surface, but also in the
water. In a situation where the bear flows on the ice floe, he
closely observes the surrounding water. In the case of noticing
the future victim, the bear dives into the water and attack.
There are occasions when a bear very suddenly throws himself
on the victim, if there is a chance that he will run away. In the
modeling of this phenomenon, the polar bear’s area of view
should be considered as

r = 4acos(¢o) sin(¢po), (7

where a € (0,0.3) is a visible distance, ¢9 € (0, 5) is the
angle of approaching to the victim. This equation is used to
describe the local movement of these individuals, where each

spatial coordinate is modified using

xh = xo £ 1 cos(pr)
x) = 1 £ [rsin(¢1) + r cos(¢s)]
xh = x9 £ [rsin(¢r) + rsin(¢2) + 7 cos(¢s)]

n—2 , (8)
T o =Tp_o =+ Z rsin(dr) + Tcos((bnl)]

k=1

n—2
Th_ | =Tp_1 L Z rsin(¢y) + Tsin(qbn_l)]

k=1

where @1, ¢a,...¢n_1 € (0,27).

Difficult living conditions on arctic surfaces may be detri-
mental to the individuals living there, for this purpose a
random value k € (0,1) is introduced, which allows to
introduction the conditions of freezing or dying from hunger
as the following rule

Death
Reproduction

where, if the first condition is met, the weakest individual dies
(on the condition that the population size is greater than half).
In the second case, the two individuals in a given iteration
(one is the best one in whole population relative to the fitness
function and when the size of population is smaller than
assumed) reproduce as

if k< 0,25

, 9
if k> 0,75 2

(Xz_)(best) + (X?)(i)
2 b

(Xt-) (new) _

: (10)

Table I: Test functions used in optimization.

Name Function formula Domain Point x Minimum
n n
Ackley —20 (—o.zd 1 me) — exp <i Zcos(mi)> (—32.8,32.8) (,...,0) 0
i=1 i=1
Booth (z1 + 222 — 7)%2 + (221 + 22 — 5)? (—10, 10) (1,3) 0
Easom — cos(z1) cos(zz) exp (— (w1 —)2 — (22 — 7)) (—10, 10) (m,m) -1
McCormick | sin(zq + z2) + (z1 — x2)? — 1.521 + 2.529 + 1 z1 € (—1.5,4), z2 € (—3,4) (—0.54719, —1.54719) —1.9133
n
Sphere > a? (—10, 10) (0,...,0) 0
iil "
Trid @ -1 > wimia (—10,10) (i(n+1— 1)) —n(ntd)(n=1)
i=1 i=2
Zakharov | > af + (Zo.wxi) + (Zo.5m> (—5,10) (0,...,0) 0
i=1 i=1 i=1

where (x*)(®¢st) and (x*)(*) are two individuals selected from
the best in whole population.

Data: number of iterations ¢, number of polar bears k,
fintess function f(-), the solution space
Result: The best polar bear
Start;
Generate a population of 0.75 - k£ bears in random way in
a given solution space;

1:=0;
while i <t do
k=0;

while 7 < k do
Calculate new position using Eq. (5);
if new position is better then
‘ Change the position of j-th bear;
end
Calculated a view distance using Eq. (7);
Move bear closer to the victim using Eq. (8);
Choose £(0, 1) in a random way;
if k > 0.75 and the population size is correct

then
Remove the weakest individual from the

population;

end
if k < 0.25 and the population size is correct

then
Take the two best individuals for the

reproduction process according to Eq. (10);

end
end

end
Return polar bear with the best fitness value f(-);
Stop;

Algorithm 2: Polar Bear Algorithm.

V. MANIPULATION OF THE INITIAL POPULATION

The idea is to place individuals at similar distances, which
has a chance to guarantee a search of a larger area. The reason
is that the placement of individuals in the original algorithms
is based on random choice. This can lead to the situation that

all individuals will be located in a similar area, omitting the
rest.

Each individual is positioned according to the solution
space, i.e. (L;, R;). Having k individuals, the area can be
divided into m parts as

m—2

R; R;
U<Li+j'mj’Li+(j+1)'nj>'

=0

(1)

In each subset, — individuals are generated in random way.

The boundary values of subsets are repeated in neighboring
elements, but it does not extend the initial range.

VI. EXPERIMENTS

As part of checking the validity of the proposed solution,
the test function described in Tab. I were used (with dimension
equal to 10). Tests for described algorithms with space ma-
nipulation and without were conducted for two different size
of population — 100 and 1000 during 300 iterations. Note that
the individuals will be placed at random, so to authenticate the
results, each algorithm will be made 10 times, and the result
averaged. Obtained solutions are presented in Tab. III and II.

According to the tables, the average results are in almost
every case more precise, which allows us to stalk that it is
worth manipulating the solution space and dividing it into
smaller subsets in which individuals will move in heuristic
algorithms.

VII. CONCLUSIONS

In this paper, we proposed an even distribution of individu-
als in the initial populations in order to increase the search of
the full area. The tests were carried out using two algorithms
inspired by nature — Cuckoo Search Algorithm and Polar Bear
Algorithm. The obtained results indicate a much faster finding
of the extreme, and compared to the same number of iterations
— the solutions are more accurate. This allows to say that
heuristics can work more effectively when their randomness
is minismized.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Table II: Obtained average results for 10 individuals.

Function name H CSA CSA with modification =~ PBA PBA with modification
Ackley 0.02972880281961 0.0177714446875131 0.0897574672427762 0.071868300285129
Booth -0.0158455184268977 -0.0089278921386823 0.063578710734648 0.0355476169081161
Easom -0.905359405654184 -0.987498435744782 -0.992768202439308 -0.982191178613431
McCormick -1.97623352281811 -1.94638200721307 -1.9460962896008 -1.86267427586381
Sphere -0.0536565001372511 0.0149251524428488 -0.0643595185430532 0.0481632181667552
Trid -209.889724268061 -210.042710510819 -210.021059083669 -210.065610355961
Zakharov 0.00851286580251198 -0.0125859739783155 -0.0245003661254888 0.0547493551181393

Table III: Obtained average results for 100 individuals.

Function name || CSA CSA with modification =~ PBA PBA with modification
Ackley 0.0234407469855811 0.011506596170644 -0.0205448465051804 0.0162699407465658
Booth -0.0176004870876672 -0.0171003493475348 -0.0215751469119336 0.00856991690897929
Easom -0.979836908462381 -0.996544835418547 -1.01681687238944 -0.989967549610368
McCormick -1.90125860997073 -1.92803074770287 -1.92798707448323 -1.99966222023081
Sphere 0.0134152536808584 0.00213265699349087 0.0206986147541081 -0.0172196125691848
Trid -210.005388625923 -209.982567193072 -210.007645864532 -209.994710194309
Zakharov -0.0181133843577064 -0.0170223669058917 0.000409970479276949 0.0166918954551055
REFERENCES

R. Damasevicius, “Optimization of svm parameters for recognition of
regulatory dna sequences,” Top, vol. 18, no. 2, pp. 339-353, 2010.

D. Potap, “Human-machine interaction in intelligent technologies using
the augmented reality,” Information Technology And Control, vol. 47,
no. 4, pp. 691-703, 2018.

Y. Gao and Y.-J. Liu, “Adaptive fuzzy optimal control using direct
heuristic dynamic programming for chaotic discrete-time system,” Jour-
nal of Vibration and Control, vol. 22, no. 2, pp. 595-603, 2016.

S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale sdn networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4-17, 2015.

Z. Pooranian, M. Shojafar, J. H. Abawajy, and A. Abraham, “An efficient
meta-heuristic algorithm for grid computing,” Journal of Combinatorial
Optimization, vol. 30, no. 3, pp. 413-434, 2015.

C. Jagtenberg, S. Bhulai, and R. van der Mei, “An efficient heuristic
for real-time ambulance redeployment,” Operations Research for Health
Care, vol. 4, pp. 27-35, 2015.

G. Capizzi, G. L. Sciuto, C. Napoli, and E. Tramontana, “Advanced and
adaptive dispatch for smart grids by means of predictive models,” IEEE
Transactions on Smart Grid, vol. 9, no. 6, pp. 6684-6691, 2017.

G. Graditi, M. L. Di Silvestre, R. Gallea, and E. R. Sanseverino,
“Heuristic-based shiftable loads optimal management in smart micro-
grids,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp.
271-280, 2015.

C. Napoli, G. Pappalardo, G. M. Tina, and E. Tramontana, “Cooperative
strategy for optimal management of smart grids by wavelet rnns and
cloud computing,” IEEE transactions on neural networks and learning
systems, vol. 27, no. 8, pp. 1672-1685, 2015.

X.-S. Yang and S. Deb, “Cuckoo search via 1évy flights,” in Nature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress
on. IEEE, 2009, pp. 210-214.

D. Potap, M. Wozniak, C. Napoli, and E. Tramontana, “Is swarm
intelligence able to create mazes?” International Journal of Electronics
and Telecommunications, vol. 61, no. 4, pp. 305-310, 2015.

D. Potap, M. Wozniak, C. Napoli, E. Tramontana, and R. DamasSevicius,
“Is the colony of ants able to recognize graphic objects?” in International
Conference on Information and Software Technologies. Springer, 2015,
pp. 376-387.

D. Potap et al., “Polar bear optimization algorithm: Meta-heuristic with
fast population movement and dynamic birth and death mechanism,”
Symmetry, vol. 9, no. 10, p. 203, 2017.

