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Abstract— Triagers deal with bug reports in software triage 

systems like Bugzilla to prioritizing, finding duplicates, and 

assigning those to developers, which these processes should be 

automated, especially for substantial open source projects. These 

bug reports must be mined by text mining, information retrieval, 

and natural language processing techniques for automation 

processes. There are many typos in user bug reports which cause 

low accuracy for artificial intelligence techniques. These typos can 

be detected based on standard dictionaries, but correction of these 

typos needs human knowledge based on the context of bug reports. 

It is essential which neither Google Translator nor Microsoft 

Office Word can detect interconnected terms –a common type of 

typos in bug reports- having more than two meaningful terms. 

This research provides a novel language-independent approach 

for fast correction of interconnected typos based on natural 

language processing and human neural network structure to 

detect and correct interconnected typos — a new tree-based 

method proposed for term matching. Also, two algorithms 

proposed for a fast finding the longest meaningful term in an 

interconnected typo. A dataset is used including 180-kilo typos 

based on four famous bug report dataset of Android, Eclipse, 

Mozilla Firefox, and Open Office projects. Then proposed method 

evaluated on typos versus state of the art. The results show the 

runtime performance of the proposed method is as same as the 

related works, but the average length of words is improved and at 

least more than 57% of typos in the dataset can be classified as 

interconnected typos. 

Keywords— Information Retrieval, Natural Language 

Processing, Duplicate Detection, Bug Reports, Typo Correction, 

Lexical Interconnected Typo, Trie 

 

I. INTRODUCTION 
Many massive projects, especially open source projects have 

a large range of analyzers, designers, developers, testers and end 
users, which after each new release, all of them may find some 
issues or bugs and/or have some suggestions to improve the 
software. Software triage systems such as Bugzilla are software 
which usually gets these reports online and then the Triagers will 
deal with these bug reports to evaluate the importance and 
priority of each report, finding duplicate reports based on their
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contents, assign bug reports to developers for checking bugs and 
planning to modify the project in future [1]. Because of the large 
amount and volume of bug reports, many researchers have tried 
to automate these processes since 2004 by artificial intelligence 
techniques and algorithms[1]. Duplicate bug reports detection is 
an essential problem in this research area [2, 3]. The algorithms 
and techniques of duplicate bug report detection such as Term 
Frequency and Inverse Document Frequency in information 
retrieval technique need to check the similarity of two bug 
reports to each other word by word, so the lexical correctness of 
words and terms is essential for these techniques [4]. There are 
many typos in bug reports, e.g., more than 50% of bug reports 
have typos, and more than 2.5% of bug reports have more than 
50% typos [4]. These typos distort similarity detection process 
in duplicate detection. It is vital to detect and correct these typos 
automatically because there are more than 1.5 million typos [4] 
in Mozilla Firefox, Android, Open Office and Eclipse datasets 
[5] and about 390-kilo unique typos in those. A scientific semi-
dictionary is made for typo detection in bug reports to detect 
typos automatically [4] including general English words and 
many scientific words like abbreviations or proper nouns. This 
semi-dictionary can be made for every language based on some 
valid reference like computer dictionaries or reference websites. 

There are many types of typos in texts such as additional, 
removal, or substitute characters. Interconnected terms are a 
regular typo in the software context because there are many 
method or class names in this context which contains 
interconnected terms like ‘getItemById’ or ‘printAllMembers’. 
Sometimes these words are camel case, and sometimes users 
typed them and have not any specific case sensitivity. Also, 
sometimes typists forgot to press space between words so there 
will be many interconnected terms in the software bug reports or 
even other contexts too. Also, it is possible to find some 
interconnected typos in optical character recognition (OCR) 
output too. These interconnected terms must be separated 
otherwise humans and/or computers algorithms, and methods 
like term frequency of information retrieval techniques cannot 
recognize the text or detect similarities for duplicate bug report 
detection problem. The primary purpose of this research is to 
figure out how does correct these typos rapidly. 
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The organization of the paper is as follows: section 2 
explains the literature view and related works. Section 3 
describes the methodology of interconnected typo correction, 
section 4 will discuss evaluation results in experiments, and 
section 5 will conclude the research. 

II. LITERATURE REVIEW 
Typo detection and correction is a regular and an ancient 

issue in text mining and natural language processing [6, 7]. 
There are many efforts on typo detection and correction in a 
scientific context like clinical records, which uses Shannon’s 
noisy channel model to predict next words based on the previous 
word sequence [8]. In some case, there is less previous word 
sequence like web query, so the log of web query can be used as 
a baseline, and maximum entropy model can help for rare 
queries to conquer the sparseness problem of prior data [9].  

Some researchers focus on correction of misspelled typos by 
different kind of machine learning and natural language 
processing models, e.g., creating a confusion matrix for a 
different type of misspellings like additional or removal or 
transposal or replaced characters to searching these patterns in 
terms and predict the correction [10]. Also, phonetic, language, 
and keyboard models can be useful for correction prediction by 
decision tree as a machine learning based technique [11, 12]. 
Another approach can be creating a model based on machine 
learning techniques to detect typos and predict the correction 
according to context and domain knowledge [13, 14]. String 
transduction tries to map one string to another and can be used 
for misspelled typo corrections too [15]. Also, machine learning 
is used in character scale to typo detection and corrections, but 
the recall rate is low (about 30%) [16]. 

Some other researchers focus on using tree structure for typo 
correction.  It is possible to make a tree based on a probabilistic 
model of the relationship between characters of words which 
what characters can become after a particular character and in 
advance mode, after a sequence of characters. So, these models 
use Bayes theory to make a prediction model on a tree called 
Trie and use it for typo correction as the user is typing [17, 18]. 
The tree structure can be used for grammatical checking and 
translating too by merging several grammatical trees in a Trie 
[19]. The simple Trie (without probability) is used for spell 
checking too [20]. The acyclic deterministic finite automata is a 
graph with a similar structure which can be used for spell 
checking and typo correction [21]. There are some methods for 
query in Trie by wild characters, too [22]. Trie-based index 
structure can be used for real-time interaction like search 
recommendation and query completion [23]. 

The interconnected terms problem was not significant a lot 
in other contexts, and there is no specific method for correction 
of interconnected terms. As it was tested, the google translate, 
and Microsoft office word can detect two parts interconnected 
terms and suggest a correction for them, but if there are more 
than two meaningful terms, they cannot detect and suggest any 
correction. It shows that even huge companies have not been 
investigated with this problem. So, a divide and conquer 
algorithm based on the most extended common sequence 
algorithm have been made, as shown in Fig. 1 to find meaningful 
terms in an interconnected term. It is a simple brute force 

algorithm which will consider all combinations of start and end 
index of a substring in interconnected term to find a meaningful 
term. Meaningfully checking needs a dictionary. Luckily an 
excellent trustful dictionary for computer context have been 
made in past research [24] and can be used for this purpose too. 

Checking a word in the dictionary usually is a daily 
operation, especially in meaningful word detection; so the time 
complexity of this process is significant. Usually, dictionaries 
sort their terms to use the binary search with log2 (N) time 
complexity for term checking which N is the number of terms in 
the dictionary. Also, every word needs to be compared with a 
suspicious meaningful word which complexity of this operation 
is based on the length of terms even though almost string 
comparer method uses short circuit idea for time reduction, in 
other words when they find first different character between two 
words, and they will cut the comparison operation. So, the 
meaningful word detection takes the logarithm (N) operation in 
the worst case to find out the result, and it is in the worst case 
usually in this procedure because many substrings are 
meaningless and they are not in dictionaries. 

 
Fig. 1. Algorithm of finding meaningful words in an interconnected 
term 

The selected dictionary contains more than 600,000 terms, 
so it needs 20 comparing (log2 (600,000)) each time. Also, the 
above algorithm has two for loop, which takes Combination (n, 
2) operations equal to n×(n-1)/2 time complexity. Each iteration 
needs a dictionary term checking, so the total complexity of this 
algorithm is in the equation  (1) which N is the number of terms 
in dictionaries, L is the average length of each term and n is the 
length of the interconnected term. Also, this algorithm can be 
parallel easily by dispatching combinations between some 
threads or processes, and two threads or processes can be made 
at least to parallelize this algorithm, which everyone uses half 
combinations. 

 𝑡(𝑁, 𝐿, 𝑛)𝐴𝑙𝑔1 = 𝑙𝑜𝑔2
𝑁  × 𝐿 ×

𝑛×(𝑛−1)

2
 

Meaningful substring can be everywhere in interconnected 
term and have overlap, e.g. ‘hishe’ can be ‘hi’ and ‘she’ or ‘his’ 
and ‘he’, so the next step is to find the meaningfulness 
combination between substrings which have no overlap (e.g. 
‘his’ and ‘she’ which is not possible according to ‘s’ overlap in 
primary interconnected term). This algorithm uses a recursive 
depth-first search approach to find all non-overlap combination 
shown in Fig. 2. It takes four inputs containing the output list of 
the previous algorithm, a start index based on the list of 

Algorithm: Meaningful Word Finding 

Input: a connected term with index of 1 to L 

Output: a list of meaningful words with start and end 

index in connected term 

For I in range of 1 to L 

    For J in range of I+1 to L 

        If substring of term from I to J is in dictionary 

            Put the (I, J, substring) in the output 
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meaningful words, a list of the selected index in meaningfulness 
combination, and the length of the interconnected term. These 
parameters are the meaningful words, start search index for next 
combinations, considered in the current path of depth search, and 
can be considered as a constant in this algorithm respectively. 
Also, the output of this algorithm is a list of combination too. 
This final list should be evaluated based on the context of 
interconnected terms, and the best combination is picked 
semantically. This algorithm will consider all combinations of 
meaningful words and choose those combinations with no 
overlap. So, if there are N words in the meaningful words list, 
the time complexity of this algorithm equals 2N, which is 
exponential, and it is a non-polynomial problem. It takes a long 
time, and it is not suitable for a real-time situation like correction 
suggestion as the user is typing in text editors which is very 
important; because if the user looks the suggestion and correct 
this typo, it is not necessary to evaluate the result combination 
semantically by artificial intelligence techniques. It is enough to 
sort the output list based on a metric and show the top-10 
suggestion to the user; then the user will pick the best one. The 
average length of words can be a useful metric because every 
much the average length of words be high, the combination 
contains the largest meaningful component in interconnected 
terms, and the possibility of meaningfulness is more. 

 
Fig. 2. Algorithm of finding meaningfulness combination between 
substrings 

III. PROPOSED METHOD 
In the middle procedure of the process of meaningful word 

finding, it has been considered that neural networks of the 
human brain look at a word and predict the next letters based on 
priors and it seems the human brain uses a tree-like algorithm to 
find the correctness of a word. So, a binary like a tree proposed 
to be made for meaningful word checking. This process needs 
two steps: creating the tree, parsing the tree for checking the 
existence of a term in the dictionary. Also after making this tree, 
it was found that this tree can be used to find meaningful words 

more efficient than brute force algorithm, so in step 3 this tree 
should be used for finding the meaningful terms. Then these 
meaningful terms should be checked where which one is much 
possible in primary interconnected term to be meaningful. Thus, 
there are four main steps to separate interconnected terms which 
shown in Fig. 3 which every step will be explained in the next 
sections with an example. 

 
Fig. 3. The 4 steps of finding meaningful words in an interconnected 
term 

Suppose that there is a dictionary with these words: ‘hello’, 
‘book’, ‘help’, ‘his’, ‘hiss’, ‘she’. Also,  
‘hellohelphissbookhishel’ is considered as multiple 
interconnected terms with a typo in the last term. Now the 
process of neural-like tree making will be explained for 
matching the input terms which this tree has called a neural 
matching tree (NMT). 

1.1 Neural Matching Tree Creation Process 

This tree is like the binary tree, but it has more than two 
children, so it is an n-ary like a tree. It has a root, and every word 
in the dictionary will have appeared as a path below of the root. 
Every letter in words will be put in a node in the tree. Also, every 
node will contain a flag for showing the end of the word, and if 
a node contains a letter which is the end of a word, the flag will 
be true; otherwise it will be false. Every node can be 
implemented by a map or dictionary data structure in 
programming languages. So, for the supposed example, this tree 
will be like the Fig. 4. In this tree, the flag of end letter of every 
word is T (true) and has different color. 

Root

 / F

b / F h / F

e / F i / F

s / F

o / F h / F

l / Fo / F s / T e / T

k / T l / F p / T s / T

o / T

 
Fig. 4. Neural Match Tree example for supposed dictionary 

It is interesting that a path can have multiple final nodes, for 
example, both words ‘his’ and ‘hiss’ have the same prefix and 

Creating NMT
Detecting 

Correct Terms

Making All 
Possible 

Combination

Evaluating and 
Finding Best 

Combinations

Algorithm: Finding meaningfulness combination 

between substrings 

Input: MW as a list of meaningful words from 1 to n 

indexes, SI as start index of searching in meaningful 

words with 0 initial value, SC as selected combination 

with empty initial value, LCT as length of connected term 

Output: a list of meaningfulness combination of words 

If start index is 0 

    Consider end point equal to 0 

Else 

    Consider end point equal to end index in SI-th of MW 

    If end point equals to LCT 

        Return SC  

For each index J which start index of J-th of MW equals 

to end point 

    Consider SCn as new list containing SC plus J as 

appended value 

    Call this algorithm with MW, J, SCn , LCT … 

and put the result in output list if it is not empty  
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in this tree, have the same path. It should be mentioned that this 
neural matching tree, can compress the dictionary too. The 
human mind is like this tree as to when we look at a word, some 
path in our brain will be activated and we can predict next letters. 
The procedure of creating NMT is explained in Fig. 5. This 
algorithm takes a list of words of a dictionary and returns the 
root node for NMT. This procedure is very simple and for every 
word, parse the tree once time from the root node and check the 
child nodes to have the letters of a word, otherwise create a child 
node for each letter as shown in Fig. 3. Also, for the last node, 
which contains the last letter of a word, the flag must be true to 
show the end of a word. 

 
Fig. 5. Algorithm of creating neural match tree 

Time and memory complexity of NMT are essential too. As 
explained before, the NMT memory is less than a simple 
dictionary, and it can be used for compression too. Also, the 
creation procedure of NMT need a parse on the whole dictionary 
just one time, so it depends on the number of words in the 
dictionary and the length of each word. If every word has an 
average length of L and there are N words in the dictionary (as 
denoted before), the time complexity will be N×L. 

 
1.2 Neural Matching Tree Using Process 

The next step is to use the NMT for checking a new term is 
valid or not; in other words, is it in the dictionary or not. This 
procedure is like the NMT creation process, which had described 
in Fig. 6. It will check every letter of the suspicious term is in 
NMT or not. If the first letter is in child nodes of the root node, 
then the next letter will check with the child node of that selected 
child node. Unlike the checking process in regular dictionaries, 
which has Log2(N)×L time complexity, this process has L time 
complexity. 

1.3 Finding Meaningful Words in an Interconnected 

Term by Neural Matching Term 

Now, it is time to do the main procedure instead of the brute 
force algorithm in Fig. 1. The first loop step of brute force 
algorithm cannot be connivance because there may be some 
lexical mistake in interconnected term and some substring is 
useless, so every substring maybe meaningful. 

 

Fig. 6. Algorithm of checking the existence of a word in NMT 

The second loop in the brute force algorithm can be more 
intelligence based on NMT by cutting the searching existence of 
substring as soon as finding a letter is that substring is not in the 
next node of NMT. The algorithm of finding meaningful words 
in interconnected term by NMT is shown in Fig. 7. The time 
complexity of searching in NMT is less than regular dictionaries. 
So, the time complexity of this algorithm will be L×L. 

 
Fig. 7. Algorithm of finding meaningful substrings in an 
interconnected term by NMT  

1.4 Finding meaningfulness combination 

As mentioned before, the recursive algorithm of finding 
meaningfulness combinations has high time complexity, so, a 
new iteration based algorithm has created for this purpose, as 
shown in Fig. 8. There is a new input in this algorithm to limit 
the search based on average word length metric as mentioned 
and select just top combination with most ranks. This algorithm 
needs a priority queue which can be implemented by heap 
algorithm as heap queue to contain every combination with its 
rank. Every time this algorithm chooses the highest rank 
combination. If this combination is completed and considered all 
non-overlap words, the combination will be added to the output 
list. Otherwise, it will be progressed to choose the next word and 
add to its combination, and calculate the rank again based on the 

Algorithm: Creating Neural Match Tree 

Input: a list of words in a dictionary 

Output: a root node to a neural match tree 

Create a Root node containing no letter with false flag 

as end character 

For each word in words list of dictionary 

 Consider n as a node pointed to Root node  

 For each letter in word 

  If letter is not in child node of n 

   Create a child node for n with 

letter and false flag 

Consider child node containing the letter as new n 

Put true flag for node n (the last one) 

Algorithm: Checking the existence of word in NMT as a 

dictionary 

Input: a Root node for NMT and a term for checking 

Output: a Boolean value indicating the existence of the …  

               word in the NMT 

Consider n as a node pointed to Root node  

For each letter in word 

    If letter is not in child node of n 

        Return False 

    Consider child node containing the letter as new n 

Return True 

Algorithm: Finding Meaningful Words of a Connected 

Term by NMT 

Input: Root of NMT and a Connected Term with index of 1 

to L 

Output: the list of meaningful substring of connected term 

An empty list for connected terms as output 

For I in range of 1 to L 

    J = I 

    Consider n as a node pointed to Root node 

    While J <= L 

        If n has a final flag (is the last letter of a word) 

            Put substring of connected term from I to J … 

index into output list 

        If letter is not in child node of n 

            Break out from while loop 

    Consider child node containing the letter as new n 
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new combination. This algorithm sort the non-overlap 
combination by the length of them descending and then choose 
combination as noted in the algorithm by underline. It causes the 
longest combination of chose. The time complexity of this 
algorithm depends on several words in a combination and 
parameter N which in the worst case if every letter of the 
interconnected term has considered as a meaningful word, the 
time complexity of this algorithm will be LCT×N and it is 
polynomial. 

 
Fig. 8. Algorithm of finding meaningfulness combination between 
substrings 

IV. EVALUATION METHOD 
The new scientific semi dictionary as word list and unique 

typo dataset of bug reports have picked for evaluating proposed 
algorithms [4]. The implementation of proposed algorithms 
done in Python 3.6 programming language and a Core i5 1.8 
GHz computer with 12GB memory having windows 8.1 x64. In 
the first step, the dataset has analyzed, and it was denoted that it 
has 391,807 suspicious typos, but it was detected that 149,749 
typos are numeric values which are hexadecimal or have semi-
hexadecimal form. Also, some of them was newly devised 
words, and some others have another type of typos. So the terms 
with length of more than five characters have been choosing for 
evaluating proposed algorithms which contain 182,402 terms. 
The evaluation designed to test algorithms based on selected 
typos of a dataset containing interconnected terms and 
considering the scientific semi dictionary. Also, two algorithms 
considered for finding meaningfulness combination between 
substrings by NMT based on [24] as Algorithm 1 (Alg.1) and 
new proposed algorithm Fig. 8. As Algorithm 2 (Alg.2). The 
results of the number of detected terms based on the average 
word length per character of detected terms are shown in Fig. 9 
using a logarithmic scale in base two. 

 
Fig. 9. Average Word Length of Detected Terms versus Alg.1 [24] 

The detail of Fig.9 is tabulated in Table 1. As it is evident in this table, 
the number of detected terms with lower length is less than the higher 
length, and it is because the new proposed algorithm chooses the 
longest combination which is more relevant based on our observations. 

TABLE I.  AVERAGE WORD LENGTH OF DETECTED TERMS 

Average Word Length Number of Detected Terms 

Algorithm 1 Algorithm 2 

0 304 175 
2 3,727 2,550 
3 37,348 34,697 
4 41,815 42,232 
5 39,003 40,063 
6 28,851 29,809 
7 17,140 17,763 
8 8,255 8,646 
9 3,548 3,776 
10 1,371 1,469 
11 516 558 
12 280 295 
13 124 130 
14 66 67 
15 25 25 
16 15 15 
17 7 7 
18 1 1 
20 2 2 
58 1 1 

The speed of both algorithms was almost the same. The 
algorithm 1 and proposed algorithm are tested for 
‘hellol654shelphissbookhishel’ too. The return value of 
algorithm 1 was ‘hel lol 6 54 shel phis sbo ok hishe l’ but the 
return value of proposed algorithm is ‘hello l654s help hiss book 
hishe l’ and the seventh answer of the proposed algorithm is 
‘hello l654s help hiss book his hel’ which is the proper answer. 

V. CONCLUSION 
This research focuses on the correction of interconnected 

terms typos by natural language processing based on a reliable 
word list like a formal dictionary to build an n-ary tree inspired 
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Algorithm: Finding meaningfulness combination between 

substrings by NMT 

Input: MW as a list of meaningful words from 1 to n 

indexes, LCT as length of connected term, N as number of 

top most meaningfulness combination 

Output: a list of meaningfulness combination of words 

Consider LS as a list of search states … 

with a combination containing 0 as index of selected … 

words with 0 rank 

While LS is not empty and has not N output 

    Pop highest rank combination in LS as HRC 

    Choose last index of combination in HRC as end point  

    For each index J which start index of J-th of MW … 

     equals to end point Sorted by J descending     
        Consider HRCn as new combination containing … 

HRC combination plus J as appended value … 

and calculate rank based on HRCn 

                If the end point of J-th of MW equals to LCT 

                    Put the combination of HRCn in output list 

                Else 

                    Put HRCn in LS 
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from human neural network to recall the memory. This tree was 
called Neural Matching Tree (NMT), which is created based on 
the word list. Then the interconnected term will be parsed based 
on NMT, and the meaningful substrings in interconnected term 
will be extracted. Then non-overlap combinations of meaningful 
substrings had picked as correction output words. The proposed 
algorithms are elementary, and their time complexity is 
negligible. Another achievement of this research is showing that 
there are many interconnected terms in the software context, 
especially bug reports. So the correction of interconnected typos 
can be useful for other goals like duplicate bug report detection 
which use information retrieval techniques like term frequency 
that use the lexical form of words and depends on having non-
typo in bug reports. 

In the next step, any improvements can be used for 
meaningfulness combination extraction process to achieve the 
best one between other combinations and also based on the main 
context. Also, other metrics can be introduced for this purpose 
instead of the average length of words, which this research had 
introduced and had used. 
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