
Fast Language-Independent Correction of
Interconnected Typos to Finding Longest Terms

Behzad Soleimani Neysiani
Department of Software Engineering, Faculty of Computer

& Electrical Engineering,
University of Kashan,
Kashan, Esfahan, Iran,

B.Soleimani@grad.kashanu.ac.ir

Seyed Morteza Babamir
Department of Software Engineering, Faculty of Computer

& Electrical Engineering,
University of Kashan,
Kashan, Esfahan, Iran,

Babamir@kashanu.ac.ir

Abstract— Triagers deal with bug reports in software triage

systems like Bugzilla to prioritizing, finding duplicates, and

assigning those to developers, which these processes should be

automated, especially for substantial open source projects. These

bug reports must be mined by text mining, information retrieval,

and natural language processing techniques for automation

processes. There are many typos in user bug reports which cause

low accuracy for artificial intelligence techniques. These typos can

be detected based on standard dictionaries, but correction of these

typos needs human knowledge based on the context of bug reports.

It is essential which neither Google Translator nor Microsoft

Office Word can detect interconnected terms –a common type of

typos in bug reports- having more than two meaningful terms.

This research provides a novel language-independent approach

for fast correction of interconnected typos based on natural

language processing and human neural network structure to

detect and correct interconnected typos — a new tree-based

method proposed for term matching. Also, two algorithms

proposed for a fast finding the longest meaningful term in an

interconnected typo. A dataset is used including 180-kilo typos

based on four famous bug report dataset of Android, Eclipse,

Mozilla Firefox, and Open Office projects. Then proposed method

evaluated on typos versus state of the art. The results show the

runtime performance of the proposed method is as same as the

related works, but the average length of words is improved and at

least more than 57% of typos in the dataset can be classified as

interconnected typos.

Keywords— Information Retrieval, Natural Language

Processing, Duplicate Detection, Bug Reports, Typo Correction,

Lexical Interconnected Typo, Trie

I. INTRODUCTION
Many massive projects, especially open source projects have

a large range of analyzers, designers, developers, testers and end
users, which after each new release, all of them may find some
issues or bugs and/or have some suggestions to improve the
software. Software triage systems such as Bugzilla are software
which usually gets these reports online and then the Triagers will
deal with these bug reports to evaluate the importance and
priority of each report, finding duplicate reports based on their

© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

contents, assign bug reports to developers for checking bugs and
planning to modify the project in future [1]. Because of the large
amount and volume of bug reports, many researchers have tried
to automate these processes since 2004 by artificial intelligence
techniques and algorithms[1]. Duplicate bug reports detection is
an essential problem in this research area [2, 3]. The algorithms
and techniques of duplicate bug report detection such as Term
Frequency and Inverse Document Frequency in information
retrieval technique need to check the similarity of two bug
reports to each other word by word, so the lexical correctness of
words and terms is essential for these techniques [4]. There are
many typos in bug reports, e.g., more than 50% of bug reports
have typos, and more than 2.5% of bug reports have more than
50% typos [4]. These typos distort similarity detection process
in duplicate detection. It is vital to detect and correct these typos
automatically because there are more than 1.5 million typos [4]
in Mozilla Firefox, Android, Open Office and Eclipse datasets
[5] and about 390-kilo unique typos in those. A scientific semi-
dictionary is made for typo detection in bug reports to detect
typos automatically [4] including general English words and
many scientific words like abbreviations or proper nouns. This
semi-dictionary can be made for every language based on some
valid reference like computer dictionaries or reference websites.

There are many types of typos in texts such as additional,
removal, or substitute characters. Interconnected terms are a
regular typo in the software context because there are many
method or class names in this context which contains
interconnected terms like ‘getItemById’ or ‘printAllMembers’.
Sometimes these words are camel case, and sometimes users
typed them and have not any specific case sensitivity. Also,
sometimes typists forgot to press space between words so there
will be many interconnected terms in the software bug reports or
even other contexts too. Also, it is possible to find some
interconnected typos in optical character recognition (OCR)
output too. These interconnected terms must be separated
otherwise humans and/or computers algorithms, and methods
like term frequency of information retrieval techniques cannot
recognize the text or detect similarities for duplicate bug report
detection problem. The primary purpose of this research is to
figure out how does correct these typos rapidly.

115

mailto:B.Soleimani@grad.kashanu.ac.ir
mailto:B.Soleimani@grad.kashanu.ac.ir

The organization of the paper is as follows: section 2
explains the literature view and related works. Section 3
describes the methodology of interconnected typo correction,
section 4 will discuss evaluation results in experiments, and
section 5 will conclude the research.

II. LITERATURE REVIEW
Typo detection and correction is a regular and an ancient

issue in text mining and natural language processing [6, 7].
There are many efforts on typo detection and correction in a
scientific context like clinical records, which uses Shannon’s
noisy channel model to predict next words based on the previous
word sequence [8]. In some case, there is less previous word
sequence like web query, so the log of web query can be used as
a baseline, and maximum entropy model can help for rare
queries to conquer the sparseness problem of prior data [9].

Some researchers focus on correction of misspelled typos by
different kind of machine learning and natural language
processing models, e.g., creating a confusion matrix for a
different type of misspellings like additional or removal or
transposal or replaced characters to searching these patterns in
terms and predict the correction [10]. Also, phonetic, language,
and keyboard models can be useful for correction prediction by
decision tree as a machine learning based technique [11, 12].
Another approach can be creating a model based on machine
learning techniques to detect typos and predict the correction
according to context and domain knowledge [13, 14]. String
transduction tries to map one string to another and can be used
for misspelled typo corrections too [15]. Also, machine learning
is used in character scale to typo detection and corrections, but
the recall rate is low (about 30%) [16].

Some other researchers focus on using tree structure for typo
correction. It is possible to make a tree based on a probabilistic
model of the relationship between characters of words which
what characters can become after a particular character and in
advance mode, after a sequence of characters. So, these models
use Bayes theory to make a prediction model on a tree called
Trie and use it for typo correction as the user is typing [17, 18].
The tree structure can be used for grammatical checking and
translating too by merging several grammatical trees in a Trie
[19]. The simple Trie (without probability) is used for spell
checking too [20]. The acyclic deterministic finite automata is a
graph with a similar structure which can be used for spell
checking and typo correction [21]. There are some methods for
query in Trie by wild characters, too [22]. Trie-based index
structure can be used for real-time interaction like search
recommendation and query completion [23].

The interconnected terms problem was not significant a lot
in other contexts, and there is no specific method for correction
of interconnected terms. As it was tested, the google translate,
and Microsoft office word can detect two parts interconnected
terms and suggest a correction for them, but if there are more
than two meaningful terms, they cannot detect and suggest any
correction. It shows that even huge companies have not been
investigated with this problem. So, a divide and conquer
algorithm based on the most extended common sequence
algorithm have been made, as shown in Fig. 1 to find meaningful
terms in an interconnected term. It is a simple brute force

algorithm which will consider all combinations of start and end
index of a substring in interconnected term to find a meaningful
term. Meaningfully checking needs a dictionary. Luckily an
excellent trustful dictionary for computer context have been
made in past research [24] and can be used for this purpose too.

Checking a word in the dictionary usually is a daily
operation, especially in meaningful word detection; so the time
complexity of this process is significant. Usually, dictionaries
sort their terms to use the binary search with log2 (N) time
complexity for term checking which N is the number of terms in
the dictionary. Also, every word needs to be compared with a
suspicious meaningful word which complexity of this operation
is based on the length of terms even though almost string
comparer method uses short circuit idea for time reduction, in
other words when they find first different character between two
words, and they will cut the comparison operation. So, the
meaningful word detection takes the logarithm (N) operation in
the worst case to find out the result, and it is in the worst case
usually in this procedure because many substrings are
meaningless and they are not in dictionaries.

Fig. 1. Algorithm of finding meaningful words in an interconnected
term

The selected dictionary contains more than 600,000 terms,
so it needs 20 comparing (log2 (600,000)) each time. Also, the
above algorithm has two for loop, which takes Combination (n,
2) operations equal to n×(n-1)/2 time complexity. Each iteration
needs a dictionary term checking, so the total complexity of this
algorithm is in the equation (1) which N is the number of terms
in dictionaries, L is the average length of each term and n is the
length of the interconnected term. Also, this algorithm can be
parallel easily by dispatching combinations between some
threads or processes, and two threads or processes can be made
at least to parallelize this algorithm, which everyone uses half
combinations.

 𝑡(𝑁, 𝐿, 𝑛)𝐴𝑙𝑔1 = 𝑙𝑜𝑔2
𝑁 × 𝐿 ×

𝑛×(𝑛−1)

2

Meaningful substring can be everywhere in interconnected
term and have overlap, e.g. ‘hishe’ can be ‘hi’ and ‘she’ or ‘his’
and ‘he’, so the next step is to find the meaningfulness
combination between substrings which have no overlap (e.g.
‘his’ and ‘she’ which is not possible according to ‘s’ overlap in
primary interconnected term). This algorithm uses a recursive
depth-first search approach to find all non-overlap combination
shown in Fig. 2. It takes four inputs containing the output list of
the previous algorithm, a start index based on the list of

Algorithm: Meaningful Word Finding

Input: a connected term with index of 1 to L

Output: a list of meaningful words with start and end

index in connected term

For I in range of 1 to L

 For J in range of I+1 to L

 If substring of term from I to J is in dictionary

 Put the (I, J, substring) in the output

116

meaningful words, a list of the selected index in meaningfulness
combination, and the length of the interconnected term. These
parameters are the meaningful words, start search index for next
combinations, considered in the current path of depth search, and
can be considered as a constant in this algorithm respectively.
Also, the output of this algorithm is a list of combination too.
This final list should be evaluated based on the context of
interconnected terms, and the best combination is picked
semantically. This algorithm will consider all combinations of
meaningful words and choose those combinations with no
overlap. So, if there are N words in the meaningful words list,
the time complexity of this algorithm equals 2N, which is
exponential, and it is a non-polynomial problem. It takes a long
time, and it is not suitable for a real-time situation like correction
suggestion as the user is typing in text editors which is very
important; because if the user looks the suggestion and correct
this typo, it is not necessary to evaluate the result combination
semantically by artificial intelligence techniques. It is enough to
sort the output list based on a metric and show the top-10
suggestion to the user; then the user will pick the best one. The
average length of words can be a useful metric because every
much the average length of words be high, the combination
contains the largest meaningful component in interconnected
terms, and the possibility of meaningfulness is more.

Fig. 2. Algorithm of finding meaningfulness combination between
substrings

III. PROPOSED METHOD
In the middle procedure of the process of meaningful word

finding, it has been considered that neural networks of the
human brain look at a word and predict the next letters based on
priors and it seems the human brain uses a tree-like algorithm to
find the correctness of a word. So, a binary like a tree proposed
to be made for meaningful word checking. This process needs
two steps: creating the tree, parsing the tree for checking the
existence of a term in the dictionary. Also after making this tree,
it was found that this tree can be used to find meaningful words

more efficient than brute force algorithm, so in step 3 this tree
should be used for finding the meaningful terms. Then these
meaningful terms should be checked where which one is much
possible in primary interconnected term to be meaningful. Thus,
there are four main steps to separate interconnected terms which
shown in Fig. 3 which every step will be explained in the next
sections with an example.

Fig. 3. The 4 steps of finding meaningful words in an interconnected
term

Suppose that there is a dictionary with these words: ‘hello’,
‘book’, ‘help’, ‘his’, ‘hiss’, ‘she’. Also,
‘hellohelphissbookhishel’ is considered as multiple
interconnected terms with a typo in the last term. Now the
process of neural-like tree making will be explained for
matching the input terms which this tree has called a neural
matching tree (NMT).

1.1 Neural Matching Tree Creation Process

This tree is like the binary tree, but it has more than two
children, so it is an n-ary like a tree. It has a root, and every word
in the dictionary will have appeared as a path below of the root.
Every letter in words will be put in a node in the tree. Also, every
node will contain a flag for showing the end of the word, and if
a node contains a letter which is the end of a word, the flag will
be true; otherwise it will be false. Every node can be
implemented by a map or dictionary data structure in
programming languages. So, for the supposed example, this tree
will be like the Fig. 4. In this tree, the flag of end letter of every
word is T (true) and has different color.

Root

 / F

b / F h / F

e / F i / F

s / F

o / F h / F

l / Fo / F s / T e / T

k / T l / F p / T s / T

o / T

Fig. 4. Neural Match Tree example for supposed dictionary

It is interesting that a path can have multiple final nodes, for
example, both words ‘his’ and ‘hiss’ have the same prefix and

Creating NMT
Detecting

Correct Terms

Making All
Possible

Combination

Evaluating and
Finding Best

Combinations

Algorithm: Finding meaningfulness combination

between substrings

Input: MW as a list of meaningful words from 1 to n

indexes, SI as start index of searching in meaningful

words with 0 initial value, SC as selected combination

with empty initial value, LCT as length of connected term

Output: a list of meaningfulness combination of words

If start index is 0

 Consider end point equal to 0

Else

 Consider end point equal to end index in SI-th of MW

 If end point equals to LCT

 Return SC

For each index J which start index of J-th of MW equals

to end point

 Consider SCn as new list containing SC plus J as

appended value

 Call this algorithm with MW, J, SCn , LCT …

and put the result in output list if it is not empty

117

in this tree, have the same path. It should be mentioned that this
neural matching tree, can compress the dictionary too. The
human mind is like this tree as to when we look at a word, some
path in our brain will be activated and we can predict next letters.
The procedure of creating NMT is explained in Fig. 5. This
algorithm takes a list of words of a dictionary and returns the
root node for NMT. This procedure is very simple and for every
word, parse the tree once time from the root node and check the
child nodes to have the letters of a word, otherwise create a child
node for each letter as shown in Fig. 3. Also, for the last node,
which contains the last letter of a word, the flag must be true to
show the end of a word.

Fig. 5. Algorithm of creating neural match tree

Time and memory complexity of NMT are essential too. As
explained before, the NMT memory is less than a simple
dictionary, and it can be used for compression too. Also, the
creation procedure of NMT need a parse on the whole dictionary
just one time, so it depends on the number of words in the
dictionary and the length of each word. If every word has an
average length of L and there are N words in the dictionary (as
denoted before), the time complexity will be N×L.

1.2 Neural Matching Tree Using Process

The next step is to use the NMT for checking a new term is
valid or not; in other words, is it in the dictionary or not. This
procedure is like the NMT creation process, which had described
in Fig. 6. It will check every letter of the suspicious term is in
NMT or not. If the first letter is in child nodes of the root node,
then the next letter will check with the child node of that selected
child node. Unlike the checking process in regular dictionaries,
which has Log2(N)×L time complexity, this process has L time
complexity.

1.3 Finding Meaningful Words in an Interconnected

Term by Neural Matching Term

Now, it is time to do the main procedure instead of the brute
force algorithm in Fig. 1. The first loop step of brute force
algorithm cannot be connivance because there may be some
lexical mistake in interconnected term and some substring is
useless, so every substring maybe meaningful.

Fig. 6. Algorithm of checking the existence of a word in NMT

The second loop in the brute force algorithm can be more
intelligence based on NMT by cutting the searching existence of
substring as soon as finding a letter is that substring is not in the
next node of NMT. The algorithm of finding meaningful words
in interconnected term by NMT is shown in Fig. 7. The time
complexity of searching in NMT is less than regular dictionaries.
So, the time complexity of this algorithm will be L×L.

Fig. 7. Algorithm of finding meaningful substrings in an
interconnected term by NMT

1.4 Finding meaningfulness combination

As mentioned before, the recursive algorithm of finding
meaningfulness combinations has high time complexity, so, a
new iteration based algorithm has created for this purpose, as
shown in Fig. 8. There is a new input in this algorithm to limit
the search based on average word length metric as mentioned
and select just top combination with most ranks. This algorithm
needs a priority queue which can be implemented by heap
algorithm as heap queue to contain every combination with its
rank. Every time this algorithm chooses the highest rank
combination. If this combination is completed and considered all
non-overlap words, the combination will be added to the output
list. Otherwise, it will be progressed to choose the next word and
add to its combination, and calculate the rank again based on the

Algorithm: Creating Neural Match Tree

Input: a list of words in a dictionary

Output: a root node to a neural match tree

Create a Root node containing no letter with false flag

as end character

For each word in words list of dictionary

 Consider n as a node pointed to Root node

 For each letter in word

 If letter is not in child node of n

 Create a child node for n with

letter and false flag

Consider child node containing the letter as new n

Put true flag for node n (the last one)

Algorithm: Checking the existence of word in NMT as a

dictionary

Input: a Root node for NMT and a term for checking

Output: a Boolean value indicating the existence of the …

 word in the NMT

Consider n as a node pointed to Root node

For each letter in word

 If letter is not in child node of n

 Return False

 Consider child node containing the letter as new n

Return True

Algorithm: Finding Meaningful Words of a Connected

Term by NMT

Input: Root of NMT and a Connected Term with index of 1

to L

Output: the list of meaningful substring of connected term

An empty list for connected terms as output

For I in range of 1 to L

 J = I

 Consider n as a node pointed to Root node

 While J <= L

 If n has a final flag (is the last letter of a word)

 Put substring of connected term from I to J …

index into output list

 If letter is not in child node of n

 Break out from while loop

 Consider child node containing the letter as new n

118

new combination. This algorithm sort the non-overlap
combination by the length of them descending and then choose
combination as noted in the algorithm by underline. It causes the
longest combination of chose. The time complexity of this
algorithm depends on several words in a combination and
parameter N which in the worst case if every letter of the
interconnected term has considered as a meaningful word, the
time complexity of this algorithm will be LCT×N and it is
polynomial.

Fig. 8. Algorithm of finding meaningfulness combination between
substrings

IV. EVALUATION METHOD
The new scientific semi dictionary as word list and unique

typo dataset of bug reports have picked for evaluating proposed
algorithms [4]. The implementation of proposed algorithms
done in Python 3.6 programming language and a Core i5 1.8
GHz computer with 12GB memory having windows 8.1 x64. In
the first step, the dataset has analyzed, and it was denoted that it
has 391,807 suspicious typos, but it was detected that 149,749
typos are numeric values which are hexadecimal or have semi-
hexadecimal form. Also, some of them was newly devised
words, and some others have another type of typos. So the terms
with length of more than five characters have been choosing for
evaluating proposed algorithms which contain 182,402 terms.
The evaluation designed to test algorithms based on selected
typos of a dataset containing interconnected terms and
considering the scientific semi dictionary. Also, two algorithms
considered for finding meaningfulness combination between
substrings by NMT based on [24] as Algorithm 1 (Alg.1) and
new proposed algorithm Fig. 8. As Algorithm 2 (Alg.2). The
results of the number of detected terms based on the average
word length per character of detected terms are shown in Fig. 9
using a logarithmic scale in base two.

Fig. 9. Average Word Length of Detected Terms versus Alg.1 [24]

The detail of Fig.9 is tabulated in Table 1. As it is evident in this table,
the number of detected terms with lower length is less than the higher
length, and it is because the new proposed algorithm chooses the
longest combination which is more relevant based on our observations.

TABLE I. AVERAGE WORD LENGTH OF DETECTED TERMS

Average Word Length Number of Detected Terms

Algorithm 1 Algorithm 2

0 304 175
2 3,727 2,550
3 37,348 34,697
4 41,815 42,232
5 39,003 40,063
6 28,851 29,809
7 17,140 17,763
8 8,255 8,646
9 3,548 3,776
10 1,371 1,469
11 516 558
12 280 295
13 124 130
14 66 67
15 25 25
16 15 15
17 7 7
18 1 1
20 2 2
58 1 1

The speed of both algorithms was almost the same. The
algorithm 1 and proposed algorithm are tested for
‘hellol654shelphissbookhishel’ too. The return value of
algorithm 1 was ‘hel lol 6 54 shel phis sbo ok hishe l’ but the
return value of proposed algorithm is ‘hello l654s help hiss book
hishe l’ and the seventh answer of the proposed algorithm is
‘hello l654s help hiss book his hel’ which is the proper answer.

V. CONCLUSION
This research focuses on the correction of interconnected

terms typos by natural language processing based on a reliable
word list like a formal dictionary to build an n-ary tree inspired

1
4

16
64

256
1024
4096

16384
65536

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 58D
ET

EC
TE

D
 T

ER
M

S
C

O
U

N
T

AVERAGE WORD LENGTH

Alg. 1 Alg. 2

Algorithm: Finding meaningfulness combination between

substrings by NMT

Input: MW as a list of meaningful words from 1 to n

indexes, LCT as length of connected term, N as number of

top most meaningfulness combination

Output: a list of meaningfulness combination of words

Consider LS as a list of search states …

with a combination containing 0 as index of selected …

words with 0 rank

While LS is not empty and has not N output

 Pop highest rank combination in LS as HRC

 Choose last index of combination in HRC as end point

 For each index J which start index of J-th of MW …

 equals to end point Sorted by J descending
 Consider HRCn as new combination containing …

HRC combination plus J as appended value …

and calculate rank based on HRCn

 If the end point of J-th of MW equals to LCT

 Put the combination of HRCn in output list

 Else

 Put HRCn in LS

119

from human neural network to recall the memory. This tree was
called Neural Matching Tree (NMT), which is created based on
the word list. Then the interconnected term will be parsed based
on NMT, and the meaningful substrings in interconnected term
will be extracted. Then non-overlap combinations of meaningful
substrings had picked as correction output words. The proposed
algorithms are elementary, and their time complexity is
negligible. Another achievement of this research is showing that
there are many interconnected terms in the software context,
especially bug reports. So the correction of interconnected typos
can be useful for other goals like duplicate bug report detection
which use information retrieval techniques like term frequency
that use the lexical form of words and depends on having non-
typo in bug reports.

In the next step, any improvements can be used for
meaningfulness combination extraction process to achieve the
best one between other combinations and also based on the main
context. Also, other metrics can be introduced for this purpose
instead of the average length of words, which this research had
introduced and had used.

REFERENCES
[1] B. Soleimani Neysiani and S. M. Babamir, "Methods of Feature

Extraction for Detecting the Duplicate Bug Reports in Software
Triage Systems," presented at the International Conference on
Information Technology, Communications and
Telecommunications (IRICT), Tehran, Iran, 2016, 2016. Available:
http://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=7
677

[2] B. Soleimani Neysiani and S. M. Babamir, "Improving Performance
of Automatic Duplicate Bug Reports Detection Using Longest
Common Sequence," in IEEE 5th International Conference on
Knowledge-Based Engineering and Innovation (KBEI), Tehran,
Iran, 2019, vol. 5.

[3] B. Soleimani Neysiani and S. M. Babamir, "New Methodology of
Contextual Features Usage in Duplicate Bug Reports Detection," in
IEEE 5th International Conference on Web Research (ICWR),
Tehran, Iran, 2019, vol. 5.

[4] B. Soleimani Neysiani and S. M. Babamir, "Automatic Typos
Detection in Bug Reports," presented at the IEEE 12th International
Conference Application of Information and Communication
Technologies, Kazakhstan, 2018.

[5] A. Alipour, A. Hindle, T. Rutgers, R. Dawson, F. Timbers, and K.
Aggarwal. (2013). Bug Reports Dataset. Available:
https://github.com/kaggarwal/Dedup

[6] L. Zhuang, F. Jing, and X.-Y. Zhu, "Movie review mining and
summarization," in Proceedings of the 15th ACM international
conference on Information and knowledge management, 2006, pp.
43-50: ACM.

[7] K. Kukich, "Techniques for automatically correcting words in text,"
Acm Computing Surveys (CSUR), vol. 24, no. 4, pp. 377-439, 1992.

[8] K. H. Lai, M. Topaz, F. R. Goss, and L. Zhou, "Automated
misspelling detection and correction in clinical free-text records,"
Journal of biomedical informatics, vol. 55, pp. 188-195, 2015.

[9] Q. Chen, M. Li, and M. Zhou, "Improving query spelling correction
using web search results," in Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL),
2007.

[10] H. M. Noaman, S. S. Sarhan, and M. Rashwan, "Automatic Arabic
spelling errors detection and correction based on confusion matrix-
noisy channel hybrid system," Egypt Comput Sci J, vol. 40, no. 2,
p. 2016, 2016.

[11] G. A. d. M. Almeida, "Using phonetic knowledge in tools and
resources for Natural Language Processing and Pronunciation
Evaluation," Master, Universidade de São Paulo, 2016.

[12] G. A. de Mendonça Almeida, L. Avanço, M. S. Duran, E. R.
Fonseca, M. d. G. V. Nunes, and S. M. Aluísio, "Evaluating phonetic
spellers for user-generated content in brazilian portuguese," in
International Conference on Computational Processing of the
Portuguese Language, 2016, pp. 361-373: Springer.

[13] Y. Huang, Y. L. Murphey, and Y. Ge, "Intelligent typo correction
for text mining through machine learning," International Journal of
Knowledge Engineering and Data Mining, vol. 3, no. 2, pp. 115-
142, 2015.

[14] Y. Huang, Y. L. Murphey, and Y. Ge, "Automotive diagnosis typo
correction using domain knowledge and machine learning," in IEEE
Symposium on Computational Intelligence and Data Mining
(CIDM), 2013, pp. 267-274: IEEE.

[15] J. Ribeiro, S. Narayan, S. B. Cohen, and X. Carreras, "Local String
Transduction as Sequence Labeling," in Proceedings of the 27th
International Conference on Computational Linguistics, 2018, pp.
1360-1371.

[16] M. Korpusik, Z. Collins, and J. Glass, "Character-based embedding
models and reranking strategies for understanding natural language
meal descriptions," Proc. Interspeech, pp. 3320-3324, 2017.

[17] H. Duan and B.-J. P. Hsu, "Online spelling correction for query
completion," in Proceedings of the 20th international conference on
World wide web, 2011, pp. 117-126: ACM.

[18] B.-J. Hsu, K. Wang, and H. Duan, "Online spelling
correction/phrase completion system," ed: Google Patents, 2012.

[19] K. Oflazer, "Error-tolerant tree matching," in Proceedings of the
16th conference on Computational linguistics-Volume 2, 1996, pp.
860-864: Association for Computational Linguistics.

[20] H. Shang and T. Merrettal, "Tries for approximate string matching,"
IEEE Transactions on Knowledge and Data Engineering, vol. 8, no.
4, pp. 540-547, 1996.

[21] S. Deorowicz and M. G. Ciura, "Correcting spelling errors by
modeling their causes," International journal of applied mathematics
and computer science, vol. 15, pp. 275-285, 2005.

[22] N. Ito, "Character-string retrieval system and method," ed: Google
Patents, 1997.

[23] P. Fafalios and Y. Tzitzikas, "Type-Ahead Exploratory Search
through Typo and Word Order Tolerant Autocompletion," J. Web
Eng., vol. 14, no. 1&2, pp. 80-116, 2015.

[24] B. Soleimani Neysiani and S. M. Babamir, "Automatic
Interconnected Lexical Typo Correction in Bug Reports of Software
Triage Systems," presented at the International Conference on
Contemporary Issues in Data Science, Zanjan, Iran, 2019.

[25] Napoli, C., Tramontana, E., Sciuto, G. L., Wozniak, M.,
Damaevicius, R., & Borowik, G. (2015, July). Authorship
semantical identification using holomorphic Chebyshev projectors.
In 2015 Asia-Pacific Conference on Computer Aided System
Engineering (pp. 232-237). IEEE.

[26] Venckauskas, A., Karpavicius, A., Damaševičius, R.,
Marcinkevičius, R., Kapočiūte-Dzikiené, J., & Napoli, C. (2017,
September). Open class authorship attribution of lithuanian internet
comments using one-class classifier. In 2017 Federated Conference
on Computer Science and Information Systems (FedCSIS) (pp. 373-
382). IEEE.

120

http://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=7677
http://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=7677
https://github.com/kaggarwal/Dedup

