CEUR-WS.org/Vol-2471/paper2.pdf

Al-assisted message processing for
the Netherlands National Police

Bas Testerink Daphne Odekerken Floris Bex
Police Lab Al Police Lab Al Police Lab Al
Netherlands National Police Netherlands National Police Utrecht University
Driebergen, The Netherlands Driebergen, The Netherlands Utrecht, The Netherlands
bas.testerink@politie.nl daphne.odekerken@politie.nl fj.bex@uu.nl

ABSTRACT

The number of messages that the Netherlands National Police (NNP)
receives (e.g. from international partner institutes and citizens)
grows steadily every year. The NNP has initiated a number of
projects to develop artificial intelligence systems that assist in the
processing of such messages. In this demo, we show a prototype of
one such system that will be used for supporting the processing of
messages from international (Interpol) partners.

1 INTRODUCTION

The number of messages that the Netherlands National Police (NNP)
receives grows steadily every year. Such messages range from noti-
fications from citizens to requests for assistance from international
partner institutes. The NNP has initiated a project to develop artifi-
cial intelligence (AI) that assists in the processing of such messages,
creating autonomous software agents that support human opera-
tors. The use of natural language processing tools is a cornerstone
of the agents, because incoming messages are typically free-text
(e-mails, online forms). Furthermore, it is important that the agents
are designed in such a way that every major decision is made trans-
parently, and that legal and ethical rules and regulations can be
enforced.

The demo system enhances the existing processing of messages
that are received through the Interpol channel. An overview of
the goal system incorporated into the Interpol message process-
ing workflow is shown in Figure 1. The pink components with
human icons are the human operators. The orange components
with the computer chips represent agent components. The yellow
components are components without agency.

Currently, a coordinator monitors all the incoming messages
and categorizes them on priority, theme and relevancy for The
Netherlands. The coordinator may answer the message directly,
forward the message to a specialist for further processing, or choose
to ignore the message, for example because it is not relevant for
the Netherlands. Specialists specialize in topics such as counter-
terrorism and child sex tourism. Usually they have access to domain
data and contacts that are relevant for their expertise. A specialist
can forward a message internally or answer it directly.

The first agent that is inserted into the workflow is the Triage
Agent, which supports the coordinator by performing classification
and information extraction tasks. What is the theme, priority and

In: Proceedings of the Workshop on Artificial Intelligence and the Administrative State
(AIAS 2019), June 17, 2019, Montreal, QC, Canada.

© 2019 Copyright for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

Published at http://ceur-ws.org

relevance of the messages? Which entities (persons, bank accounts,
countries, organisations) are mentioned in the message? What is
the intent of the sender — are they asking for information, or do they
expect the Dutch police to take action? Not all of these questions can
be answered given just the message. For instance, the occurrence
of a person in the police databases may determine the relevancy
for The Netherlands. The Triage Agent thus reads the e-mails and
supports the coordinator. If the coordinator agrees with the agent,
they forward the messages with the relevant annotations (entities,
intent, priority level, etc.).

The second type of agent is a Specialist Agent, which supports
specialists to do routine work on their respective themes. The agents
that work for the specialists will formulate the task that is required
given the message, execute it, and then report their findings to the
specialist as an enhancement of the initial message. The idea is that
the specialist ultimately receives messages as if a colleague already
processed it. For instance, consider a notification that during a
routine border patrol a Dutch vehicle was found to contain illegal
drugs. The Triage Agent already determined the vehicle to be indeed
Dutch and the message is forwarded to the specialist agent for drug
related crime. This specialist agent has access to current drug-
related investigations such as which organizations are of special
interest. It tries to match the notification to existing investigations
or otherwise initiates a new one. By the time the specialist receives
the notification from agent he or she can immediately see how the
notification relates to past information and what course of action
would be prudent. The main task of the specialist then becomes the
monitoring and training of the agent.

A final piece of functionality will be to aggregate the messages.
At the NNP we are working on real-time monitoring of intelligence
data from international partners, combining it with open source
intelligence (news, Wikipedia, Twitter) and in-house intelligence
from the NNP.

2 AGENT ARCHITECTURE

The architecture we use for the individual (Triage and Specialist)
agents is the same architecture that we have used in our other
project Intelligence Amplification for Cybercrime (IAC) [1], in which
we have designed an agent to assist the NNP in the assessment of
crime reports submitted by civilians. In a nutshell, the agent ap-
plies information extraction techniques to understand a document,
applies legal reasoning to determine whether more information
is required and applies a policy that is optimized for efficiency to
determine the next action.

The agent’s goal is to produce some (information) product such
as a report, reply or analysis. We refer to a coherent sequence of

AIAS, June 17, 2019, Montreal, QC, Canada

Inbox

‘\ I Incoming messages
N
N

Outbox

Outgoing messages

Testerink, Odekerken and Bex

Triage Coordinator
Agent
Suggestions
Feedback
Annotated messages
Pl Specialist k Specialist
~
Agent k
Feedback
Suggestions

Domain

Data &
Data

Updates

Message summaries

gias~ Specialist 1 Specialist
Agent 1
Feedback
Suggestions
Domain
Data 1
Updates Data
=
\ N
\ N—
N
International
Monitor

Querviews \ vg
\
N\
N

~ ~

Aggregation
Service

Figure 1: Al-assisted message processing multi-agent system overview.

interactions with the environment as a session. For example, a
session can be a sequence of database queries that were required
to respond to a message. A session always ends with a terminal
action. For instance, terminal actions can be to ignore the message,
forward it or answer it directly.

For many law-enforcement applications we need to be able to
check why the agent suggests (or directly executes) some terminal
action. The basis for many decisions is legislation. Hence, we draw
upon the field of computational legal argumentation (cf. [2]) to
ensure that the agent has an argument grounded in the relevant
rules and regulations when it decides upon a terminal action. The
agent architecture is designed for creating agents that efficiently
seek information in their environment and transparently decide on
which terminal action ought to be executed [4].

Figure 2 shows an overview of the agent architecture. The de-
ployment phase concerns the actual functionality of the agent.
The training phase is required to configure the deployment phase
components. The deployment components are the top-half (blue)
components. The training components are the bottom-half (green)
components. The monitor interface and argumentation engine are
used in both phases.

2.1 Deployment

The agent connects to its environment through an external interface.
That interface differs per application. In the message processing sys-
tem, it will contain functionalities such as forwarding e-mails and
querying databases. Typically, the external interface is implemented
as a layer that calls different APIs of other systems and passes on
the callback. The aim of the agent is to create some (information)
product such as a message which is annotated with analyses and
suggested actions. These products are stored in the product database.
Such a product is typically built in two phases: first the agent tries
to find enough information to make a final decision on the product,
and second the final decision results in a terminal action.
External information, such as a message and database results,
are feedback which the external interface sends to the internals of
the agent. The feedback is put through a pipeline of classifiers and
attribute extractors which turn the feedback into structured data
(statements about the feedback which are attributes and Boolean
observations). For our earlier IAC intake agent, we use existing
named entity recognition software [3] and bespoke classifiers (cf.
Section 2.2) to classify and extract entities (e.g. the suspect, the
victim, addresses) and relations (e.g. “the suspect received money
from the victim”). For the Interpol Triage agent we use Spacy as the
basis and apply pre- and post-processing to improve upon its base

Al-assisted message processing for
the Netherlands National Police

Feedback

ries,
Terminal actions,
Feedback

Monitor

Product,
Queries,
Terminal actions

~ =~ _ Classifiers &
>« Attribute Extractors
\

’ Observations,
Attributes

Classi fiers,
Extractors

Auto-

S .
\« Experimenter
\

Updates

Training Data & Labeled data

I User data

AIAS, June 17, 2019, Montreal, QC, Canada

Queries,
Terminal actions

Observations

Policy con figuration Argumentation

Policy -
<
\ Learner

Argumentation
~ .
\« Engine
\

Observations I

Argumentation \

Queries

Observations

Environment

Figure 2: Agent architecture.

performance. Our choice for Spacy was based on its ease-of-use
and available multi-language models for NLP.

The classification and extraction pipeline consists of many sepa-
rately constructed components which may result in inconsistent
results. Hence, we apply a consistency control mechanism which
makes sure that the data is consistent. It also checks whether the
data is complete. That check is mainly for fulfilling the precondi-
tions of final actions, e.g., administrative requirements. The result
of this controller is what we consider to be the state of current
session, where a session is a sequence of actions after the initial
input until the information product is produced (i.e. the suggested
course of action for the user).

The actual decision making of the agent is executed by a decision-
making policy. Based on the state, it determines the next action; this
can be an information gathering action (query) or a terminal action.
The policy may draw upon the argumentation engine in order to
argue for or against an action. The actuator of the agent prepares
the action for execution through the agent’s external interface. For
instance, the action might be an information gathering action upon
a database. The actuator may then formulate an SQL query which
the external interface ensures is sent to the appropriate database

and returns the result as feedback to the classification and attribute
extraction pipeline.

2.2 Training

The monitor interface allows a human operator to monitor the
agent’s activities and control its training phase. The human op-
erator uses the monitor interface also to create labelled data by
approving or disapproving (part of) the agent’s activities. The mon-
itor interface also shows the argumentation behind core decisions.
This connection is not shown in the figure as showing the argu-
mentation does not directly impact the agent’s decision-making.
However, it does help the human operator to understand the choices
of the agent and localize where potential corrections have to be
made. The training of the agent is based on example data and config-
uration settings of its different training tasks. For the observations
and attributes, we apply supervised learning which is enabled by
the gathering of labelled data during deployment. An automated
experimenter module tries different algorithms in order to deter-
mine for each observation and attribute what the best classifier or
extractor is.

AIAS, June 17, 2019, Montreal, QC, Canada

The policy of the agent is shaped by reinforcement learning
(although other methods can be used). The policy learner tries to
create a policy which efficiently interacts with the environment.
For instance, it may try to minimize the amount of data that it
queried from databases. In order to practice these interactions, the
policy learner requires an environment model that is generated
from the training data. The model captures for instance probability
distributions over random variables that the agent encounters. At
the moment the model’s implementation is a Bayesian network
where its nodes are observations that the argumentation module
may use to construct arguments with. For reinforcement learning,
we apply the argumentation engine as part of its reward function.
The agent gets a positive reward when it achieves a state such
that more feedback from the external interface cannot change its
opinion on the terminal action. When such a state is reached, it
is natural to opt for the terminal action that the agent can argue
for [4].

3 DESIGN CONSIDERATIONS

The application of autonomous A.L systems requires careful con-
siderations with respect to their potential impact. We decided to
restrict the agent’s capabilities to reading messages, querying sys-
tems and presenting information to the human operator since we
cannot guarantee correct behaviour due to the agent’s reliance on
imperfect information extraction. The agent has no capability for
updating databases or sending messages without explicit approval
from the human operator.

During deployment, every decision outcome of the agent is doc-
umented in its trace for auditability and can be inspected by a
human operator. However, it should be noted that it is not always
possible to completely reproduce the behaviour of the agent: some
queried databases contain data that is forbidden by law to store
in the same environment. Hence, it is for instance not allowed to
store raw database query results. As a result, there are situations
in which it cannot be reproduced which information the agent ex-
actly had when it made a decision. This happens for example when
source databases are updated. The human operator can provide
feedback through the monitor interface which can be taken into
consideration when the system is retrained/adjusted.

Interpretability has been an import design influence from the
start. It was determined early on that extracting information from
data will be a hard to interpret exercise under most circumstances.
From this point of view, it was not desirable to design the appli-
cation as an end-to-end system. Instead, it was opted to create a
method where the granularity of extraction can be balanced with
interpretability and transparency. In short, we designed the system
in such a way that we can choose how much information is ob-
tained through extraction techniques and how much is inferred by
argumentation. Generally the trade-off is accuracy vs. transparency.

In order to increase and maintain the accuracy of the agent, we
rely on three pillars: A) human operators keep providing training
data, which is done not only for keeping the data up-to-date, but
also to comply with expiry dates of data; B) the auto-experimenter
rigorously searches for the best models; and C) collaborations with
academia ensure that the latest academic results are tried and tested.

Testerink, Odekerken and Bex

4 CONCLUSION

In this paper we briefly discuss a multi-agent architecture for han-
dling messages from international Interpol partners to the NNP, as
well as the architecture of a single agent. In our live demo, we show
the workings of a single Triage Agent with a realistic example. We
encourage interested programmers to contact the authors for the
source code.

REFERENCES

[1] EJ. Bex, J. Peters, and B. Testerink. 2016. Al for online criminal complaints:
From natural dialogues to structured scenarios. In Artificial Intelligence for Justice
Workshop (ECAI 2016). 22-29.

[2] H. Prakken and G. Sartor. 1996. A dialectical model of assessing conflicting
arguments in legal reasoning. In Logical models of legal argumentation. Springer,
175-211.

[3] M.P. Schraagen, M.J.S. Brinkhuis, and F.J. Bex. 2017. Evaluation of Named Entity

Recognition in Dutch online criminal complaints. Computational Linguistics in

the Netherlands Journal 7 (2017), 3-16.

Marijn Schraagen, Bas Testerink, Daphne Odekerken, and Floris Bex. 2019.

Argumentation-driven information extraction for online crime reports. In First

Workshop on Legal Data Analytics and Mining (LeDAM 2018).

[4

	Abstract
	1 Introduction
	2 Agent architecture
	2.1 Deployment
	2.2 Training

	3 Design considerations
	4 Conclusion
	References

