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Abstract—Interpolation is a tool based on finding a specific
function that passes through certain points. This issue is impor-
tant from the point of view of applications in data processing,
and in particular finding a curve showing some initial conditions.
In this work, interpolation with multitude of different degrees is
analyzed due to their advantages and disadvantages.

I. INTRODUCTION

Mathematics gave the backbone to many fields of science,
in particular to computer science. A large number of more
and more complex algorithms or applications is based on the
determination of specific elements. To this end, a numerical
approach is used that the computer is able to perform. How-
ever, this approach means approximation, since it is not always
possible to accurately determine any values for continuous
functions. The reason is an infinite set of values.

The approximation of results is a very important aspect,
above all in biometry. In [1], the authors used curve approxi-
mation to modify the set of points representing the signature.
Again in [2], the idea of using interpolation was used for
the purpose of verification of security protocols. Another
area where approximation is used is feature extraction [3]
and classification [4]. In addition, this type of mathematical
operations are used in the process of creating rules for fuzzy
systems [5]. In this paper, we analyze different degrees of
polynomials in the interpolation process.

II. POLYNOMIAL INTERPOLATION

Polynomial interpolation is a method in numerical analysis,
which purpose is to find the polynomial approximated to the
original function. The interpolation works, when we have a
set of points x0, x1,..., xn, which are called nodes and their
values y0, y1,...,yn. The searched polynomial must satisfied
a few requirements: its degree must be smaller or equal to
(n − 1) and points (xi, yi) must belong to it. It means, that
w(x0) = y0, w(x1) = y1,..., w(xn) = yn and it will be an
approximation of searched function.

Interpolation is usually used in the situation, when we have
a certain number of measurements, for example in physics
experiment, and we have to find an approximated function for
them.

c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Let us assume, that polynomial w(x) has a following
formula

w(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0 (1)

Rememebring that w(xi) = yi we can write the system of
equations

anx
n
0 + an−1x

n−1
0 + ...+ a1x0 + a0 = y0

anx
n
1 + an−1x

n−1
1 + ...+ a1x1 + a0 = y1

...

anx
n
n−1 + an−1x

n−1
n−1 + ...+ a1xn−1 + a0 = yn−1

anx
n
n + an−1x

n−1
n + ...+ a1xn + a0 = yn

.

(2)
which can be calculated as the system of matrices

xn0 xn−10 xn−20 ... x0 1
xn1 xn−11 xn−21 ... x1 1
... ... ... ... ... ...
xnn xn−1n xn−2n ... xn 1



an
an−1
...
a0

 =


y0
y1
...
yn

 (3)

We have to find coefficients a0, a1,...,an, but the condition
number of this matrix may be large. Additionaly number of
equations may cause difficulty in calculating it fast enough.
In due to it, the simpler method was created – writing the
polynomial as Lagrange’s polynomial.

A. Lagrange’s Polynomial

The Lagrange’s polynomial is a easier way to find searched
polynomial of the function. Instead of calculating a system
of equation or matrices, we must find the polynomial using
specific formula

w(x) =

n∑
i=0

yi

n∏
j=0∧j 6=i

x− xj
xi − xj

(4)

Values yi can be replaced with values of function our f(xi)
and then polynomial will have following formula

w(x) =

n∑
i=0

f(xi)

n∏
j=0∧j 6=i

x− xj
xi − xj

(5)

and w(x) will be an approximation of function f(x) and will
have common points in x0, x1,..., xn.

The Alg. 1 shows the pseudocode of finding the Lagrange’s
polynomial for any number of nodes n.
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Figure 1: Two functions with their polynomial interpolations for various n.

Figure 2: The function, which shows us the problem called Runge’s phenomenon.
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Data: Given set of points x0, x1, ..., xn and values in
these points y0, y1, ..., yn

Result: The polynomial w approximated to the
original function

Start;
w(x) = 0;
i = 0;
j = 0;
for i ≤ n do

Φ = 1;
for j ≤ i− 1 do

Φ = Φ
x−xj

xi−xj
;

j + +;
end
for i+ 1 ≤ j ≤ n do

Φ = Φ
x−xj

xi−xj
;

j + +;
end
w = w + yiΦ;
i+ +;

end
Return w as found polynomial;
Stop;

Algorithm 1: Polynomial interpolation algorithm.

B. Error of polynomial interpolation

All of approximation methods are determined by an error
dependent on the features of the method. For the polynomial
interpolation method, when we have function f : [a, b] → R
and its approximated polynomial calculated on set od nodes
x0, x1,...,xn, the error have the following formula

f(x)− w(x) =
Mn

n!
(x− x0)(x− x1)...(x− xn) (6)

where Mn is determined by the formula:

Mn = sup|f (n)(x)| (7)

and f (n)(x) means n-th derivative of f(x).

III. EXPERIMENTS

To find the difference for various n and xi, we compared
polynomials for three functions:
• f(x) = sin(x) ∈ [0, π],
• g(x) = x5 + 2x2 − 3 ∈ [−1, 1],
• h(x) = 1

1+0.08x2 ∈ [−20, 20].
For each of them we used another interval and nodes to

show additional features of Lagrange’s interpolation. For the
trigonometric function f(x) = sin(x) we found the second,
third, fourth and fifth degree polynomial. The effect was
showed on Fig.1. We can see on the graph, that the second
degree polynomial, linear function, is not visible. This is due
to our interval and nodes (x0 = 0 and x1 = π) and their
values, which are 0. Because it is linear function, it found the
polynomial w(x) = 0. For a quite accurate approximation of

sin(x) five nodes was enough. The found polynomial has a
following formula

w(x) = 0.99x+ 0.05x2 − 0.23x3 + 0.04x4 (8)

and covers the original function on the graph.
Second analyzed function is g(x), which is third degree

polynomial. In this way we can say, that for n = 4 it will
find precisely the same polynomial as g(x). However it finds
a little different polynomial showed on Eq.9.

w(x) = −3−6.710−16z+2x2+3.610−15x3+8.810−16x4+x5

(9)
We can see, that coefficients for x3 and x4 are very close to

be 0. In this case if indeed they would equal zero, we would
get the function g(x). Similar to previous function f(x), the
third degree polynomial w(x) covers original function on the
graph.

The above results suggest us, that for the bigger number of
the nodes we will get polynomial, which is more approximated
to original function. However with bigger n, the calculating
last longer and becomes less effective.

The third function h(x) = 1
1+0.08x2 is moe complicated,

because it shows us the problem called Runge’s phenomenon.
It is happening for the functions, where our nodes are equidis-
tant. Then with increasing the degree of polynomial, quality
of interpolation increases, but after a while rapidly deacreases.
It is the most visible at the end of the interval, in this case
[−20, 20]. The Fig. 2 shows the effect of eqidistant nodes.
We can see, that each one graph for increased degree is less
effective atthe ends of interval. It is the most visible for tenth
degree (red color), where difference between polynomial and
original function h(x) is huge.

To prevent increasing of this error, we should find another
nodes, which will be concetrated at the ends of interval. For
this function we used two set of nodes to find tenth degree
polynomial:

xi = −20,−16,−12,−8,−4, 0, 4, 8, 12, 16, 20 (10)

and

x1 = −20,−19,−17,−15,−10,−5, 0, 5, 10, 15, 17, 19, 20
(11)

where the first one shows us the Runge’s phenomenon and
the other is to reduce difference between function and its
polynomial. Comparision of both polynomials is shown on
Fig.3.

Increasing density of nodes at the ends of the interval causes
aproaching the polynomial to the original function, but it also
caused less effectivness for values about [−10,−5] and [5, 10].
To reduce these errors we should find more nodes in this
interval and calculate a polynomial with the bigger degree.
However, the calculations will last longer because of bigger set
of data, which will decrease effectiveness of the interpolation.
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Figure 3: Two different set of nodes for the same function h(x).

IV. CONCLUSION

In this paper we compared the degree of polynomials in
polynomial interpolation. This is accurate method for function,
which are similar to polynomials and usually the better result
is given for the bigger number of nodes. Howevere with
increasing number of nodes and degree of polynomial, the
time for calculations increases too.
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