
Extreme Learning Machines with Regularization for the Classification of Gene
Expression Data

Dániel T. Várkonyi, Krisztián Buza

Eötvös Loránd University, Faculty of Informatics, Department of Data Science and Engineering,
Telekom Innovation Laboratories, Budapest, Hungary

{varkonyid,buza}@inf.elte.hu
WWW home page: http://t-labs.elte.hu

Abstract: Extreme learning machine (ELM) is a special
single-hidden layer feed-forward neural network (SLFN),
with only one hidden layer and randomly chosen weights
between the input layer and the hidden layer. The ad-
vantage of ELM is that only the weights between hidden
layer and output layer need to be trained, therefore, the
computational costs are much lower, resulting in moderate
training time. In this paper, we compare ELMs with
different regularization strategies (no regularization, L1,
L2) in context of a binary classification task related to
gene expression data. As L1 regularization is known to
lead to sparse structures (i.e., many of the learned weights
are zero) in case of various models, we examine the
distribution of the learned weights and the sparsity of the
resulting structure in case of ELM.

Keywords: Extreme Learning Machine, Classifica-
tion, Logistic Regression, L1 Regularization, Gene
Expression

1 Introduction

Recent advances in neural networks lead to breakthroughs
in many applications in various domains, such as games,
finance, medicine and engineering, see e.g. [6], [17], [21].
In most cases, gradient-based training is used to find ap-
propriate values of the weights of the network. Gradients
are usually calculated with back propagation (BP) [16].
However, gradient-based training may be too slow in cer-
tain applications.

For the above reason, other training approaches were
proposed, such as subset selection [13], [4], second or-
der optimization [7], and global optimization [2], [19], see
also [1] for details. All the aforementioned algorithms
may stuck into local minima, and suffer from slow con-
vergence.

Extreme Learning Machines (ELM) were introduced
by Huang et al. [10], [11] as a special single layer feed-
forward neural network. ELMs are general function ap-
proximators. ELMs overcome the main disadvantages of
feed-forward neural networks (FNN). The training speed
of ELM is much faster than that of FNN, since ELM has

Copyright c©2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

only one hidden layer, the input weights (i.e., the weights
between the input layer and the hidden layer) are initial-
ized once, and not trained iteratively. With a well chosen
convex activation function, the issue of stucking into local
minima can be avoided.

While neural networks are powerful, due to their com-
plexity, in the lack of appropriate regularization, they tend
to overfit the data. In the era of deep learning, L1 regu-
larization became popular due to various reasons: on one
hand, sparse structures resemble the brain, on the other
hand, they lead to computationally cheap models as the
resulting zero-weights correspond to the lack of connec-
tions, thus they may be omitted.

Regularized ELMs have been shown to outperform non-
regularized ELMs [5], [12], [15], [20]. However, as op-
posed to our study, none of the aforementioned works fo-
cused on the classification of gene expression data and the
sparsity of the learned weights.

In our study, we compare various regularization tech-
niques – in particular: L1 and L2 regularization as well as
the lack of regularization – in context of classification of
gene expression data using ELM.

2 Basic Notation and Problem Formulation

First, we define the classification problem and introduce
the basic notation which is used in this paper. We are given
a set X = {x(1),x(2), . . . ,x(m)} of training data containing
instances x(i) = (x(i)1 ,x(i)2 , ...,x(i)n ) ∈ IRn. For each instance
x(i), its label y(i) is also given. The set of labels is denoted
by Y = {y(1),y(2), . . . ,y(m)}. Each label y(i) ∈ {0,1}, 0 de-
notes a negative instance and 1 denotes a positive instance.

We use x1,x2, ...xn to denote the input nodes. H is the
only hidden layer and the number of units in the hidden
layer is denoted by L. We use hi to denote the ith hidden
node. The activation value of ith hidden node for an in-
stance x is hi[x] ∈ IR, bi ∈ IR is the bias of ith hidden node,
ai, j ∈ IR is the randomly initialized weight from xi to jth
hidden node.

The output layer contains only one single unit, βi ∈ IR
is the weight from hi to the output unit and bo ∈ IR is the
bias of output node. ELM(x) ∈ IR is the activation of the
output unit for an input instance x. The structure of ELM
is shown in Fig. 1.



Figure 1: Structure of ELM for binary classification [14]

As described in Section 3.2, training ELM leads to a
minimization problem:

min
βi

J(β ) (1)

where J(β ) is the cost function of ELM.

3 Methods

In this chapter we will introduce the fundamentals required
to understand our work such as ELM, logistic regression
and regularization of logistic regression.

3.1 ELM

Extreme Learning Machine is a special kind of single layer
feed forwarded network. The network has only one hidden
layer. The weights between the input layer and the hidden
layer (input weights, for short) are initialized once and not
trained, i.e., they remain unchanged. The output weights
between the hidden layer and the output layer are trained
iteratively. As the input weights remain in their initial state
and only the output weights are trained, the training time
of an ELM is much lower than that of a comparable single
layer feed-forward neural network (SLFN) [11].

The output of an ELM is the value of the activation func-
tion applied to the weighted sum of the activation values
of hidden nodes:

ELM(x) = g(
L

∑
j=1

β jh j[x]+bo) (2)

where g is the activation function. Since stucking into lo-
cal minima needs to be avoided, a convex activation, in
particular, the sigmoid function was chosen as activation
function:

g(z) =
1

1+ e−z . (3)

The value of ith hidden node for x input is:

hi[x] = g(
n

∑
j=1

a j,ix j +b j). (4)

3.2 Logistic Regression in the Output Layer of ELM

Logistic regression (LR) is one of the most often and ef-
fectively used binary classification method. In our case,
the output layer of ELM implements logistic regression
based on the hidden units’ activation values. Thus the cost
function without regularization is:

J(β ) =
1
m

m

∑
i=1

Cost(ELM(x(i)),y(i)) (5)

where:

Cost(ELM(x),y) =

{
−log(ELM(x)), if y=1
−log(1−ELM(x)), if y=0.

(6)

Using (5) with (6), the cost function can be equivalently
written as:

J(β ) =− 1
m

m

∑
i=1

(y(i)log(ELM(x(i)))

+(1− y(i))log(1−ELM(x(i)))).
(7)

The partial derivative of the cost function w.r.t. the kth
parameter (βk) is:

∂

∂βk
J(β ) =

1
m

m

∑
i=1

(ELM(x(i))− y(i))hk[x(i)] (8)

Logistic regression can be trained with gradient descent.
That is: after initializing the parameters βk, in every itera-
tion, all βk-s are updated simultaneously according to the
following rule:

βk = βk−α
∂

∂βk
J(β ) (9)

where α is the learning rate.

3.3 LASSO and Ridge Regression in the Output
Layer of ELM

In logistic regression and generally in all regression mod-
els, it is a common goal to keep the model as simple as pos-
sible. Regularization punishes a complex model, in partic-
ular, a penalty term is added to the cost function. Ridge re-
gression (L2) adds squared magnitude of the coefficients
as penalty term to the loss function. LASSO (Least Ab-
solute Shrinkage and Selection Operator) regression adds
absolute value of the coefficients as penalty term to the loss
function. The key difference between these techniques is
that LASSO shrinks the less important features’ coeffi-
cients to zero, thus, leads to a model with less complex
structure.

In our case, the L1 regularized cost function is:

J(β ) =
1
m

m

∑
i=1

Cost(ELM(x(i)),y(i))+
λ

m

L

∑
j=1
|β j|, (10)



its partial derivative w.r.t. the kth parameter (βk) is:

∂

∂βk
J(β ) =

1
m

m

∑
i=1

(ELM(x(i))− y(i))hk[x(i)]+
λ

m
sign(βk).

(11)
In our case, the L2 regularized cost function is:

J(β ) =
1
m

m

∑
i=1

Cost(ELM(x(i)),y(i))+
λ

m

L

∑
j=1

β
2
j , (12)

and its partial derivative w.r.t. the kth parameter (βk) is:

∂

∂βk
J(β ) =

1
m

m

∑
i=1

(ELM(x(i))−y(i))hk[x(i)]+2
λ

m
βk (13)

where λ is the regularization coefficient which shows the
weight of the penalty term in connection with the average
cost.

Using the above partial derivatives, similarly to the case
of logistic regression, gradient descent can be used to train
L1 and L2-regularized ELMs.

3.4 Our Approach

We propose to use ELM for the classification of gene ex-
pression data. We train the weights of the output layer of
ELM with L1-regularized logistic regression (LASSO).

4 Dataset and Preprocessing

Classification of gene expression data is a challenging
task with prominent applications in the medical domain,
such as the diagnosis of different subtypes of cancer, see
e.g. [3], [18] and the references therein. For this reason, we
compare ELMs with different regularization techniques on
a publicly-available gene expression dataset, called Mice
Protein Expression Data.

The Mice Protein Expression Dataset1 is available from
the UCI repository The main properties of the dataset are
summarized in Tab. 1.

Mice Protein Expression Dataset consists of measure-
ments of gene expression levels in mice. In total, the ex-
pression levels of 77 genes were measured for 72 mice,
out of which 34 were trisomic (trisomy in mice may be
seen as a model of Down syndrome in human), while 38
belonged to the control group (i.e., mice that are not af-
fected by the disease). The expression levels of each gene
were measured 15-times for each mouse, resulting in a
total of 72× 15 = 1080 instances, each of them contain-
ing 77 gene expression features, see also [9] for details.
For each mouse, its genotype, behavior and treatment are
available in the dataset. In our experiment, we used the
genotype as class label.

The data contained high number of missing values for
some of the gene expression features (in particular for

1https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression

BAD_N, BCL2_N, pCFOS_N, H3AcK18_N, EGR1_N,
H3MeK4_N genes). We ignored these features.

Some of the instances of the remaining dataset con-
tained missing values in other features, these instances
were also ignored resulting in a dataset of 1047 instances
and 71 gene expression features.

We split the data into train and test sets as follows: the
test set contains 346 randomly selected instances, while
the remaining 701 instances are assigned to the training
set.

5 Experimental Settings

We compared three ELMs that differ in terms of the ap-
plied regularization technique: in the first model we did
not use any regularization at all, in the second and third
models we used L1 and L2 regularization, respectively.
All three models were initialized with the same parame-
ters.

For the Mice Dataset, the input weights, hidden biases
and the output bias bo were randomly sampled from uni-
form distributions between −0.1 and 0.1, −0.75 and 0.75,
as well as −1 and 1. The initial value of each output
weight βk was set to zero.

Settings of the hyperparameters of ELMs, such as num-
ber of hidden nodes, learning rate, regularization coeffi-
cient and the number of training iterations are summarized
in Tab. 2.

6 Experimental Results

We use the area under receiver-operator characteristic
curve (AUC) [8] to assess the accuracy of the examined
models. Fig. 2 shows the AUC on the test set as the func-
tion of the number of training iterations. As expected,
AUC grows with increasing number of iterations. As one
can see, the L1-regularized model and the model without
regularization outperform the L2-regularized model. The
AUC of the model without regularization and with L1 reg-
ularization converge to the approximately same value.

Table 1: Characteristic of Mice Protein Expression Dataset

Property Value

Data Set Characteristics Multivariate
Number of Instances 1080

Area Life science
Attribute Characteristics Real

Number of Attributes 82
Associated Task Classification
Missing values Yes



Table 2: Hyperparameters of ELMs in case of the Mice
Gene Expression Dataset

Parameter Value(s)

Number of hidden nodes (L) 250
Learning rate (α) 0.1

Regularization coefficient (λ ) 0.01
Number of training iterations 60M

Figure 2: AUC on the test set as function of the number of
training iterations

Table 3: AUC values of different methods

Method Value(s)

ELM without regularization 0.999
ELM with L1 regularization 0.998
ELM with L2 regularization 0.989

SVM 0.960

L1 regularization is known to lead to sparse structures.
Especially in case of highly-correlated features with simi-
lar predictive power, L1 regularization tends to prefer the
best out of the slightly different features in the sense that
a relatively high weight will be assigned to this ”best” fea-
ture, while zero weights will be assigned to the other ones.
In contrast, L2 regularization distributes the weights more
”fairly” in the sense that highly correlated features will re-
ceive approximately the same weights.

For the above reasons, in case of L1 regularization, we
expect many of the βk weights being approximately zero.
In accordance with these expectations, we observed that
more than two-third of all the βk weights were less than

Figure 3: Number of zero βk-s as the function of the num-
ber of iterations

Figure 4: Distribution of βk-s

the learning rate after 125 million iterations. In this re-
spect, the L1-regularized model is substantially different
from the other two models as it can be seen in Fig. 3. The
distribution of βk-s can be seen in Fig. 4.

The sparsity of the L1-regularized model, i.e., the high
number of βk-s being (close to) zero, leads to a compu-
tationally simpler model: only the activation values of
those hidden units need to be calculated for which the
corresponding βk is different from zero. This makes L1-
regularized ELMs better suitable for scenarios in which
the computational power is limited, such as embedded sys-
tems in case of wearable medical devices or self-driving
cars.



7 Conclusion and Outlook

In this paper, we compared regularization approaches in
context of classification of gene expression data with ex-
treme learning machines. We observed that L1 regulariza-
tion leads to sparse models that are computationally sim-
pler than the comparable models without regularization or
with L2 regularization. Therefore, L1-regularized models
may be better suitable for embedded systems.

We plan to perform similar experiments on further gene
expression datasets as part of our future work.

Acknowledgement

This work was supported by the project no. 20460-
3/2018/FEKUTSTRAT within the Institutional Excellence
Program in Higher Education of the Hungarian Ministry
of Human Capacities. This work was also supported by
Telekom Innovation Laboratories (T-Labs), the Research
and Development unit of Deutsche Telekom.

References

[1] Albadr, M., Tiuna, S.: Extreme Learning Machine: A
Review. International Journal of Applied Engineering Re-
search 12 (2017) 4610–4623

[2] Branke, J.: Evolutionary algorithms for neural network de-
sign and training. In Proceedings of the First Nordic Work-
shop on Genetic Algorithms and its Applications. (1995)
1–21

[3] Buza, K.: Classification of gene expression data: a
hubness-aware semi-supervised approach. Computer meth-
ods and programs in biomedicine 127 (2016) 105–113

[4] Chen, S.,Cowan, C. F., Grant, P. M.: Orthogonal least
squares learning algorithm for radial basis function net-
works. IEEE Transactions on neural networks 2 (1991)
302–309.

[5] Wanyu, D.,Qinghua, Z., Lin, C.: Regularized extreme
learning machine. IEEE symposium on computational in-
telligence and data mining (CIDM2009) (2009) 389–395.

[6] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S.
M., Blau, H. M., Thrun, S.: Dermatologist-level classifica-
tion of skin cancer with deep neural networks. Nature 542
(2017) 115–118

[7] Hagan, M. T., Menhaj M. B.: Training feedforward net-
works with the Marquardt algorithm. IEEE transactions on
Neural Networks 5 (1994) 989–993.

[8] Hanley, J. A., McNeil B. J.: A method of comparing the
areas under receiver operating characteristic curves derived
from the same cases. Radiology 148(3) (1983) 839–843

[9] Higuera, C., Gardiner, K. J., J. Cios, K. J.: Self-Organizing
Feature Maps Identify Proteins Critical to Learning in
a Mouse Model of Down Syndrome. PLoS ONE 10(6)
(2015) e0129126

[10] Huang, G., Zhu, Q., Siew, CK.: Extreme Learning Ma-
chine: A New Learning Scheme of Feedforward Neural
Networks. Proceedings of the International Joint Confer-
ence on Neural Networks 2 (2004) 985–990

[11] Huang, G., Zhu, Q., Siew, CK.: Extreme learning ma-
chine:theory and applications. Neurocomputing 70 (2006)
489–501.

[12] Iosifidis, A., Tefas, A., Pitas, I.: Extreme learning machine
for large-scale media content analysis. Procedia Computer
Science 53 (2015) 420–427.

[13] Li, K.,Peng, J.-X.,Irwin, G. W.: A fast nonlinear model
identification method. IEEE Transactions on Automatic
Control 50 (2005) 1211–1216.

[14] Li, Y., Zhang, S., Yin, Y., Xiao, W., Zhang, J.: A Novel On-
line Sequential Extreme Learning Machine for Gas Utiliza-
tion Ratio Prediction in Blast Furnaces. Sensors 17 (2017)
1847.

[15] Martínez-Martínez, J., Escandel-Montero, P., Soria-Olivas,
E., Martín-Guerrero, J., Magdalena-Benedito, R., Gómez-
Sanchis J.: Regularized extreme learning machine for re-
gression problems. Neurocomputing 74 (2011) 3716–3721.

[16] Rumelhart, D. E., Hinton, G. E., Williams, R. J.: Learn-
ing representations by back-propagating errors. Nature 323
(1986) 533–536.

[17] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L.,van den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis D.:
Mastering the game of Go with deep neural networks and
tree search. Nature 529 (2016) 484–489

[18] Sotiriou, C., Soek-Ying, N.,McShane, L. M.,Korn, E. L.,
Long, P. M.,Jazaeri, A., Martiat, P., Fox, S. B.,Harris, A.
L., Liu E. T.: Breast cancer classification and prognosis
based on gene expression profiles from a population-based
study. Proceedings of the National Academy of Sciences
100 (2003) 10393—10398.

[19] Yao, X.:A review of evolutionary artificial neural networks.
International Journal of Intelligent Systems 8 (1993) 539–
567.

[20] Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin,
E., Lendasse A.: Regularized extreme learning machine for
regression with Missing Data. Neurocomputing 102 (2013)
45–51.

[21] Yuchi, T.,Kexin, P., Suman, J., Baishakhi, R.: DeepTest:
automated testing of deep-neural-network-driven autono-
mous cars. Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE’2018) 303–314


	Introduction
	Basic Notation and Problem Formulation
	Methods
	ELM
	Logistic Regression in the Output Layer of ELM
	LASSO and Ridge Regression in the Output Layer of ELM
	Our Approach

	Dataset and Preprocessing
	Experimental Settings
	Experimental Results
	Conclusion and Outlook

