
Optimization in Federated Learning

Vukasin Felbab, Péter Kiss, and Tomáš Horváth

Department of Data Science and Engineering
ELTE – Eötvös Loránd University, Faculty of Informatics

Budapest, H-1117 Budapest, Pázmány Péter sétány 1/C., Hungary
vukasindfelbab@gmail.com, {peter.kiss, tomas.horvath}@inf.elte.hu

Abstract: Federated learning (FL) is an emerging branch
of machine learning (ML) research, that is examining the
methods for scenarios, where individual nodes possess
parts of the data, and the task is to form a single com-
mon model that fits to the whole distribution. In FL,
we generally use mini batch gradient descent for optimiz-
ing weights of the models that appears to work very well
for federated scenarios. For traditional machine learning
setups, a number of modifications has been proposed to
accelerate the learning process and to help to get over
challenges posed by the high dimensionality and non-
convexity of search spaces of the parameters. In this paper
we present our experiments on applying different popu-
lar optimization methods for training neural networks in a
federated manner.

1 Federated Learning

Federated learning (FL) [1] is a new paradigm in Machine
Learning (ML), that is dealing with an increasingly impor-
tant distributed optimization setting, that came into view
with the spread of small user devices and applications writ-
ten for them that can profit from ML. The domain of ML
models is often the data collected on the devices, thus, to
train these models, one should incorporate the knowledge
contained into the learning process. The traditional way
for this would be to transfer the information gathered at
the users to data centers, where the training takes place,
then send back the trained models to the users. That, apart
from the obvious privacy concerns, can incur a huge com-
munication overhead along with the need for significant
storage and computational resources at the place of cen-
tralized training.

The idea proposed in [1] is that, instead of moving the
training data to centralized location, one could exploit the
computational power residing at the user devices and dis-
tribute the training process across the participating nodes.

1.1 Distributed Optimization

In ML, the goal is to find a model for the training data that
minimizes a loss function f that defines how our learned
model distribution differs from the empirical distribution.

Copyright ©2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

This measure in general case can be formalized as a nega-
tive log likelihood.

f =−Ex∼pdata [log pmodel(x)] (1)

That is, if a given example x is drawn from the training
data distribution, what is the probability that it will be
present in the same form in the model distribution as well.
If the model is for predicting some value(s) y based on a
vector of some attributes x this can be rewritten as

f (x,y,w) =− log p(y|x;w) (2)

,
The problem we want to solve is to minimize the loss

function f with respect to model parameters w, that is an
aggregation of the losses over all available data point as
follows:

min
w∈Rd

f (w), where f (w) =
1
n

n

∑
i=1

fi(w), (3)

where fi(w)
def
= f (xi,yi,w) denotes the loss on data point i

given the parametrization w.
In the setup of FL the characteristics of data distribution

from which our training examples (xi,yi) will be drawn,
are the following:

1. Massively Distributed. Data points are stored across
a large number K of nodes. In particular, the number
of nodes can be much bigger than the average number
of training examples stored on a given node (n/K).

2. Non-IID. Data on each node may be drawn from a
different distribution, i.e. the data points available lo-
cally are far from being a representative sample of the
overall distribution.

3. Unbalanced. Different nodes may vary by orders of
magnitude in the number of training examples they
hold.

If we adapt the objective function (see Eq. 3) to these
characteristics, our problem can be defined as introduced
in the following paragraphs.

We have K nodes and n data points, a set of indices Pk
(k ∈ {1, . . . ,K}) of data stored at node k, and nk = |Pk| is
the number of data points at Pk. We assume that Pk ∩
Pl = /0 whenever l 6= k, thus ∑

K
k=1 nk = n.

We can then define the local loss for node as Fk(w)
def
=

1
nk

∑i∈Pk
fi(w) Thus the problem to be minimized will be-

come:

minw∈Rd f (w) =
K

∑
k=1

nk

n
Fk(w). (4)

To solve the problem in (4) the simplest algorithm is
FederatedSGD introduced in [2], that is equivalent to mini-
batch gradient descent over all data, and it is a simple ap-
plication of distributed synchronous Stochastic Gradient
Descent (SGD) [3] for the described setup.

Algorithm 1 FederatedSGD
1: procedure SERVER
2: initialize w0
3: for t = 0;1;2; ... do
4: for all k in the K nodes in parallel do
5: wk

t+1← ClientUpdate(k,wt)
6: end for
7: wt+1 = ∑

K
k=1

nk
n wk

t+1
8: end for
9: end procedure

10: procedure CLIENTUPDATE(k,w)
11: B← split Pk to set of batches
12: for all b ∈B do
13: w← w−η∇ f (w,b)
14: end for
15: return W
16: end procedure

In neural network (NN) optimization, due to the non
convexity of the loss functions, the most used methods
for optimization of network parameters are gradient based,
more specifically the versions of SGD [4]. Gradient de-
scent methods take derivatives of loss function according
to the parameters of the model, then move the parameter
values in the negative of the gradient.

The pure form of SGD samples a random function (e.g
a random training data point) it ∈ 1,2, ...,n in iteration t
and performs the update:

wt+1 = wt −ηt∇ fit (wt), (5)

where ηt denotes the learning rate, which is, in the base
case, decaying during the learning to enforce convergence.
Intuitively, SGD works because evaluating the gradient at
a single training example gives an unbiased estimation of
derivative of the error function over all the training exam-
ples: E[∇ fit (w)] = ∇ f (w).

In practice, instead of applying the gradient for w at
each example, usually an average of gradients over b ran-
domly chosen examples is used, that are evaluated at the
same w. This method is called minibatch gradient de-
scent (MBGD), that better exploits parallel computational
capabilities of the hardware. (MBGD is still commonly
referred to as SGD) Though SGD/MBGD in the above

form is very popular in optimization, the basic approach
can sometimes result in very slow learning. To tackle the
challenges incurred by high curvature and noisy gradients
of the loss function of NN, a range of method has been
proposed based on exponentially decaying average of the
gradients or on adapting learning rates. [5]

In this paper, we investigate the effects of these meth-
ods on the performance , of federated training of artificial
neural networks.

1.2 Momentum techniques

Momentum based techniques [6] use a velocity term dur-
ing learning, that is an exponentially weighted average
over the gradients of the past.

v← βv−∇w(
1
m

m

∑
i=1

fi(w))

w← w+v (6)

This term, on one hand, accelerates the learning process
and, on the other hand, helps to get over noisy gradient
and local minima or flat points of surface defined by the
error function f .

A variant of momentum algorithm is introduced in
[7] and is based on the Nesterov’s accelerated gradient
method, that differs from the standard momentum of (6)
in the place of the evaluation of the gradient.

v← βv−∇w(
1
m

m

∑
i=1

fi(w+αv))

w← w+v (7)

In Nesterov’s momentum, the gradients are evaluated in-
corporating the velocity. This can be interpreted as adding
a correction factor to the standard momentum algorithm
[5].

1.3 Adaptive Learning Rates

Setting up learning rates is one of the most important fac-
tor in the learning process and deeply influences the per-
formance. Thus, finding methods to adapt the learning rate
might yield a substantial increase in speed of the learning.
The AdaGrad algorithm [8] adjusts the learning rates indi-
vidually for each parameter, taking into account the whole
history of the parameters, following the assumption, that
if the magnitude of the gradients is big than it should be
increased:

ηt =
η√

∑
t−1
τ=1 g2

τ

, (8)

where g = ∂ f
∂w j

for some parameter w j, and thus ηt will
be the learning rate belonging to w j a timestep t.

It has been found empirically that aggregating the gradi-
ents from the beginning of the optimization can lead to too

fast decay in the learning rate, that, in some cases, leads to
weak performance.

To remedy this problem RMSProp [9] (the same time
proposed by the authors of AdaDelta [10]) replaces this
aggregation with a decaying average, in the form:

vt = ρvt−1 +(1−ρ)g2
t

ηt =
η√

vt + ε
(9)

RMSProp has been proven very effective in non-convex
optimization problems of NN, thus, it is the most often
used technique in practice.

According to the explanation in [5], AdaGrad is de-
signed to converge rapidly when applied to convex func-
tions. In non-convex cases it should pass many structures
before arriving at a convex bowl, and, since it accumulates
the entire history of the squared gradient, it can shrink pre-
maturely and eventually vanish. In contrast, discarding the
old gradients in the RMSProp case enables learning to pro-
ceed rapidly after finding the convex bowl, equivalently as
if AdaGrad would have been initialized within that convex
area.

1.4 Adam

The name of the Adam algorithm [11] comes from “adap-
tive momentum”, and can be viewed as the combination of
adaptive learning rates and momentums.

gt ← ∇w(
1
m

m

∑
i=1

fi(wt−1)) (10)

mt ←
β1mt−1 +(1−β1)gt

1−β t
1

(11)

vt ←
β2vt−1 +(1−β2)g2

t

1−β t
2

(12)

wt ← wt−1−
ηmt√
vt + ε

(element-wise) (13)

In Adam, the weight update is given by applying the
RMSProp learning rate (12) on the momentum (11). (In
Equation (12) and (11) the denominator is applied bias
correction on the estimates.) We are not aware of clear
theoretical understanding why this is advantageous, how-
ever, it seems to work very well in practice and became
a de facto default optimization technique for a lot of ML
practitioners.

2 Experimental setup

For analyzing thew performance of the optimizer algo-
rithms, we implemented a simulation environment that
trains multiple local NN models that would be aggregated
into one common model, according to the Algorithm 1.

Compared to Algorithm 1, we have been varying the
CLIENTUPDATE(k,w) method, where the local updates

have been calculated. (Except for first experiment, since
it describes exactly the MBGD method).

The new CLIENTUPDATE(k,w) method is introduced in
the Algorithm 2.

Algorithm 2 ClientUpdate
1: procedure CLIENTUPDATE(k,w)
2: B← split Pk to set of batches
3: for all b ∈B do
4: ∆w = Optimizer(w,b)
5: w← w−∆w
6: end for
7: return W
8: end procedure

Naturally, all the optimizers have their own hyper-
parameters which should be tuned to get the best possi-
ble result. However, for this experiment we used only the
recommended values for them (that are in fact the default
values in Keras/TensorFlow libraries).

2.1 Topology

The model we used is a simple multilayer perceptron. The
input layer consists of 784 input units that is the flatten
representation of the input images of size 28× 28 pixels.
The input is connected to one hidden layer of 128 neurons
with ReLU activation. The output layer corresponds to
the 10 output classes, thus it has 10 neurons with softmax
activation.

In the implementation of the network, we relied on
Keras NN API on a TensorFlow backend.

2.2 Data

For the experiment, we have chosen the Fashion MNIST
dataset [12] that was planned to replace the MNIST bench-
mark database.

From the characteristics of the FL scenario, in this ex-
periment, we focused on non-iid nature of the data. That
is, we have created local datasets of a highly skewed man-
ner. Namely, training data at a given node contains ex-
clusively, or almost exclusively, instances from the same
class.

For these experiment, we have not taken into account
the unbalanced nature, and each node have been assigned
the same amount of data. Our idea here was that if some-
thing works in this simple setup then it might work in use
cases closer to the real world problem.

Due to the lack of computational resources we also ig-
nored the “massively distributed” condition and set the
number of nodes to 10.

The distributions of the local datasets we tried in the
experiments are the following:

99% non-iid The training data has been split into two
parts in the ratio of 99%-1%, where the parts are indepen-
dent and identically distributed, as best as possible. The
99% part will be assorted accorded to classes and then one
class assigned to one of the nodes. The 1% part will be
equally split into 10 parts and then added to the dataset of
the particular nodes.

full-non-iid In the second test case, we assorted fully the
training data and each node receives a dataset consisting
of instances belonging purely to one single class.

2.3 Hyperparameters

To measure general applicability of the examined algo-
rithms on the problem of FL, we executed the learning
process multiple times, using different parametrisations.
In setting the hyperparameters we followed the Method of
GridSearch, that is we defined a set of possible values for
each hyperparameter, then run the algorithms with all the
combinations. At defining the set of the possible values we
tried to include extremities and generally recommended
values. In addition to the parameters described in Section
1 we also included experimenting with the decay of the
learning rate. Here we only tried tried nevertheless two
case at each configuration of the other parameters, the one
without decay, and the one with time based decay, where
the learning rate a time t will be ηt =

η0
1+φ∗t with the decay

rate parameter φ = η0
max{t} .

3 Results

FedSGD - Simple Minibatch Gradient Descent As a
baseline we run the experiment with the standard Mini-
batch Gradient Descent optimiation. The experiment re-
sult is shown in Figure 1. It is clear that, as it of-
ten happens, the most simple algorithm, MBGD places
the baseline rather high for the more sophisticated op-
timizer algorithm. It performs very well for the 99%
non-iid datasets and surprisingly well with the full-non-
iid datasets, achieving an accuracy close to 75% in the 30
iterations with the best configuration of hyperparameters
(η = 0.001, no decay).

Moreover, in results it seems like on both distribution
too high learning rate without decay leads to a poor per-
formance.

FedSGD + Nesterov momentum In Figure 2, the results
using the Stochastic Gradient Descent with Nesterov mo-
mentum can be seen. We found that incorporating local
momentum into computing the partial directions of the up-
dates has a strong positive effect both on performance and
convergence rate of the aggregated model at both data dis-
tributions.

The best performing configurations reached in the first
couple of iterations the highest accuracy achieved by the
baseline during the entire experiment. According to our
results the higher the value β (that is the past directions in-
fluence stronger the update) is generally the better perfor-
mance, apparently independently from η and decay rate.

FedSGD + AdaGrad The AdaGrad algorithm yields an
even better performance 3, on the 99% non-iid datasets.
Using this method results in the fastest convergence until
the 70% of the baseline. In the first 30 rounds, though
AdaGrad’s performarnce drops dramatically full-non-iid
datasets, reaching at most a 25% accuracy without ob-
vious perspective further improvement. It might be inter-
esting to check how many random training examples need
to be put into the full-non-iid datasets to achieve the very
good performance of the AdaGrad which is measured with
the 99% non-iid datasets.

FedSGD + RMSProp The RMSProp optimizer is used in
the experiment which has produced the statistics in Figure
4. We experienced that this optimizer algorithm apart from
the stronger variance of performance seems to approach
the accuracy of the AdaGrad and Nesterov momentum
methods, and outperforming MBGD baseline as well on
the 99% non-iid distribution. One the other hand though
the accuracy on the full-non-iid still achieves a signifi-
cantly worse performance compared to MBGD and Nes-
terov momentum, however leraning curve is much more
promising than the one of AdaGrad. It reaches in the
best performing setups about 50% accuracy, and shows an
emerging tendency as well.

FedSGD + Adam The last experiment, we were apply-
ing Adam. The method is one of the most popular and
often default optimizer(11), thanks to fast convergence,
high accuracy in the traditional NN learning, and to its
robustness to hyperparameter settings. In our experiment
however, Adam worked with a very similar effectiveness
to RMSProp, and has been definitely outperformed by
MBGD and Nesterov momentum (Figure 5) regarding to
performance and smoothness of learning on the full-non-
iid datasets.

4 Conclusion

In our experiment we found, that the best performing op-
timizer algorithms for both the distribution are Minibatch
Gradient Descent without and with Nesterov momentum,
whilst Adadelta and RMSProp is promising despite their
poor performance on fully non-IID datasets. As one could
have assumed, the presence of the non-iid part of the train-
ing data has a very strong regularizing effect even if its
weight seems to negligible compared to the dominating
class.

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

lr:0.001 decay:0.0 momentum:0.0
lr:0.001 decay:0.0 momentum:0.0
lr:0.01 decay:0.0 momentum:0.0
lr:1.0 decay:0.0 momentum:0.0
lr:0.001 decay:0.001 momentum:0.0
lr:0.01 decay:0.01 momentum:0.0
lr:1.0 decay:1.0 momentum:0.0

SGD

Figure 1: FedSGD baseline(simple minibatch updates)

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

lr:0.001 decay:0.0 momentum:0.5
lr:0.01 decay:0.0 momentum:0.5
lr:1.0 decay:0.0 momentum:0.5
lr:0.001 decay:0.001 momentum:0.5
lr:0.01 decay:0.01 momentum:0.5
lr:1.0 decay:1.0 momentum:0.5
lr:0.001 decay:0.0 momentum:0.9
lr:0.01 decay:0.0 momentum:0.9
lr:1.0 decay:0.0 momentum:0.9
lr:0.001 decay:0.001 momentum:0.9
lr:0.01 decay:0.01 momentum:0.9
lr:1.0 decay:1.0 momentum:0.9
lr:0.001 decay:0.0 momentum:0.95
lr:0.01 decay:0.0 momentum:0.95
lr:1.0 decay:0.0 momentum:0.95
lr:0.001 decay:0.001 momentum:0.95
lr:0.01 decay:0.01 momentum:0.95
lr:1.0 decay:1.0 momentum:0.95

Nesterov

Figure 2: FedSGD + Nesterov momentum

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

lr:0.001 decay:0.0 epsilon:1e-08
lr:0.01 decay:0.0 epsilon:1e-08
lr:1.0 decay:0.0 epsilon:1e-08
lr:0.001 decay:0.001 epsilon:1e-08
lr:0.01 decay:0.01 epsilon:1e-08
lr:1.0 decay:1.0 epsilon:1e-08

Adagrad

Figure 3: FedSGD with AdaGrad

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

lr:0.001 decay:0.0 epsilon:1e-08 rho:0.5
lr:0.01 decay:0.0 epsilon:1e-08 rho:0.5
lr:1.0 decay:0.0 epsilon:1e-08 rho:0.5
lr:0.001 decay:0.001 epsilon:1e-08 rho:0.5
lr:0.01 decay:0.01 epsilon:1e-08 rho:0.5
lr:1.0 decay:1.0 epsilon:1e-08 rho:0.5
lr:0.001 decay:0.0 epsilon:1e-08 rho:0.9
lr:0.01 decay:0.0 epsilon:1e-08 rho:0.9
lr:1.0 decay:0.0 epsilon:1e-08 rho:0.9
lr:0.001 decay:0.001 epsilon:1e-08 rho:0.9
lr:0.01 decay:0.01 epsilon:1e-08 rho:0.9
lr:1.0 decay:1.0 epsilon:1e-08 rho:0.9
lr:0.001 decay:0.0 epsilon:1e-08 rho:0.95
lr:0.01 decay:0.0 epsilon:1e-08 rho:0.95
lr:1.0 decay:0.0 epsilon:1e-08 rho:0.95
lr:0.001 decay:0.001 epsilon:1e-08 rho:0.95
lr:0.01 decay:0.01 epsilon:1e-08 rho:0.95
lr:1.0 decay:1.0 epsilon:1e-08 rho:0.95

RMSprop

Figure 4: FedSGD with RMSProp

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

0 5 10 15 20 25 30
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.5
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.5
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.5
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.5 beta2:0.5
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.5 beta2:0.5
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.5 beta2:0.5
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.9
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.9
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.9
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.5 beta2:0.9
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.5 beta2:0.9
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.5 beta2:0.9
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.95
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.95
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.5 beta2:0.95
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.5 beta2:0.95
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.5 beta2:0.95
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.5 beta2:0.95
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.5
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.5
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.5
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.9 beta2:0.5
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.9 beta2:0.5
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.9 beta2:0.5
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.9
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.9
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.9
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.9 beta2:0.9
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.9 beta2:0.9
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.9 beta2:0.9
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.95
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.95
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.9 beta2:0.95
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.9 beta2:0.95
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.9 beta2:0.95
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.9 beta2:0.95
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.5
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.5
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.5
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.95 beta2:0.5
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.95 beta2:0.5
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.95 beta2:0.5
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.9
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.9
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.9
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.95 beta2:0.9
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.95 beta2:0.9
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.95 beta2:0.9
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.95
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.95
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.95
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.95 beta2:0.95
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.95 beta2:0.95
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.95 beta2:0.95

Adam

Figure 5: Federated Averaging - Adam

In general we experienced that methods that are in-
tended to reduce the variance of the gradient direction
works actually quite well for our specific scenario (1).
This can be because momentum techniques can be seen
as an averaging over the subsequent gradients, leading to
a less and less biased estimate of the optimal update di-
rection. The fact that strong momentum (high β) seems
to help in the big majority of configurations of the other
parameters supports this idea.

On the other hand methods that aim at adapting the mag-
nitude of the gradients seem to harm the learning process
(2) in the full-non-iid case. The reason behind this phe-
nomenon is most probably, that the local optimisers update
their inner state – which here corresponds to η learning
rate – based on the local gradients. In each local training
round according to our intuition the magnitude of gradi-
ents start growing, since the aggregation of the local mod-
els moved the model away from the locally optimal model,
but as we approaching again the local optima, they start
shrinking again, resulting in slower start (smaller η) of
optimization in the next iteration.

The extremely poor performance of AdaGrad on the
full-non-iid dataset can support this intuition, since it pre-
vents even the described fluctuation of the learning rate,
instead it decreases it continuously.

The good performance of these algorithms on the 99%
non-iid might be explainable with the presence of gradi-
ents of really big magnitude in the decaying average that
controls the learning rate keeping it at an effective level.

Another interesting phenomenon is that in case of Adam
– where momentum and adaptive learning rates are both
applied – the strong deccelerating effect of learning rate
adaption apparently overrides the help of the momentum.

However looking at magnitude of performance differences
it might be understandable.

Although according to our results these optimizers are
not clearly beneficial in perspective of finding the best
global model, they still could be useful for optimizing the
global model at clients. One can argue, that in the end
the goal of the entire federated optimization is to provide
clients with a model performs well on their own data.

Acknowledgements EFOP-3.6.3-VEKOP-16-2017-
00001: Talent Management in Autonomous Vehicle
Control Technologies - The Project is supported by the
Hungarian Government and co-financed by the European
Social Fund.

Supported by Telekom Innovation Laboratories (T-
Labs), the Research and Development unit of Deutsche
Telekom.

References

[1] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik,
“Federated optimization: Distributed machine learning for
on-device intelligence,” arXiv preprint arXiv:1610.02527,
2016.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from
decentralized data,” arXiv preprint arXiv:1602.05629,
2016.

[3] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz,
“Revisiting distributed synchronous sgd,” arXiv preprint
arXiv:1604.00981, 2016.

[4] L. Bottou, “Online learning and stochastic approxima-
tions,” On-line learning in neural networks, vol. 17, no. 9,
p. 142, 1998.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT press, 2016.

[6] B. T. Polyak, “Some methods of speeding up the conver-
gence of iteration methods,” USSR Computational Mathe-
matics and Mathematical Physics, vol. 4, no. 5, pp. 1–17,
1964.

[7] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On
the importance of initialization and momentum in deep
learning,” in International conference on machine learning,
2013, pp. 1139–1147.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

[9] G. Hinton, N. Srivastava, and K. Swersky, “Neural net-
works for machine learning,” Coursera, video lectures, vol.
264, 2012.

[10] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
arXiv preprint arXiv:1212.5701, 2012.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[12] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel
image dataset for benchmarking machine learning algo-
rithms,” arXiv preprint arXiv:1708.07747, 2017.

	Federated Learning
	Distributed Optimization
	Momentum techniques
	Adaptive Learning Rates
	Adam

	Experimental setup
	Topology
	Data
	99% non-iid
	full-non-iid

	Hyperparameters

	Results
	FedSGD - Simple Minibatch Gradient Descent
	FedSGD + Nesterov momentum
	FedSGD + AdaGrad
	FedSGD + RMSProp
	FedSGD + Adam

	Conclusion
	Acknowledgements

