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Abstract: With the spread of digitalization across every
aspects of society and economy, the amount of data gen-
erated keeps increasing. In some domains, this generation
happens in such a massively distributed fashion that poses
challenges for even collecting the data to build machine
learning (ML) models on it, not to mention the process-
ing power necessary for training. An important aspect of
processing information that has been generated at users is
privacy concerns, that is, users might be unwilling to ex-
pose anything that would enable one to draw any conclu-
sion regarding to confidential information they possess. In
this work, we present a experiment on a genetic algorithm
based federated learning (FL) algorithm, that reduces the
data transfer from individual users to the learner to a single
fitness value.

1 Introduction

The paradigm of federated learning (FL) [1] addresses
the more and more timely scenario in which the data to
be processed is generated in a massively distributed en-
vironment, where traditional approaches for building ma-
chine learning (ML) models become extremely challeng-
ing, mostly in logistical point of view. That is, when data
is generated at client devices as mobile phones, tablets or
smart watches, collecting, storing and processing all these
information in data centers might be difficult task (aggre-
gation problem) and, according to the idea of FL, not nec-
essary by all means.

Another problem regarding the traditional data center
based solution is privacy concerns. It might happen that
users of the applications that build on centralized model
training are reluctant to share their possibly confidential
data. We believe a particularly fitting scenario for this
problem is the use case of medical applications. Each
medical institute might have a lot of patient data, but that
may be far from enough to train their own prediction mod-
els. Here, sharing the data across a big number of institute
can yield a great help in developing automated diagnostic
tools. But being the private nature of these data, hospitals
probably decide not to share anything of this information
either to protect their reputation or due to legal regulations.

As it is summarized in [1], the characteristics of data
that FL is concerned with can be described as follows:
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• Massively Distributed Data points are stored across
a large number K of nodes. In particular, the number
of nodes can be much bigger than the average number
of training examples stored on a single node (n/K).

• Non-IID Data on each node may be drawn from a dif-
ferent distribution. That is, the data points available
locally are far from being a representative sample of
the overall distribution.

• Unbalanced Different nodes may vary by orders of
magnitude in the number of training examples they
hold.

Formally, we have K nodes and n data points, a set of
indices Pk (k ∈ {1, . . . ,K}) of data stored at node k, and
nk = |Pk| is the number of data points at Pk. We assume
that Pk ∩Pl = /0 whenever l 6= k, thus ∑

K
k=1 nk = n.

We can then define the local loss for node as Fk(w)
def
=

1
nk

∑i∈Pk
fi(w), where fi(w) is the loss of our model at the

ith training example, given the parametrisation w. Thus
the problem to be minimized will become:

minw∈Rd f (w) =
K

∑
k=1

nk

n
Fk(w). (1)

To solve the learning problem (6) for neural networks
(NNs), the mainstream way is – starting from a common
initial parametrisation – to train local models using some
version of gradient descent methods, then aggregate the
local model updates (e.g. gradients), or equivalently the
local models themselves to update the global model. The
global model then will be sent back to the worker nodes.
Algorithm 1 is one of the most successful algorithms for
federated NN training, called FederatedAveraging [2].

FederatedAveraging works pretty well solving the ag-
gregation problem, however using gradients or, equiva-
lently, the local models for the global aggregation step still
exposes some information on users data. To address pri-
vacy concerns, the solution is usually to apply achieve-
ments of differential privacy[3][4][5] atop the gradient
based learning process.

In this paper we present a slightly different approach,
namely, we investigated whether it is possible to train NNs
in a federated fashion without using gradient in any con-
text. To approach the problem, it seemed to be a simple
choice to try evolutionary algorithms. Since a rich liter-
ature is already available on evolutionary optimization of



Algorithm 1 FederatedAveraging
1: procedure SERVER
2: initialize w0
3: for t = 0;1;2; ... do
4: m← max(C ·K,1)
5: St ← m client nodes randomly
6: for all k ∈ St in parallel do
7: wk

t+1← ClientUpdate(k,wt)
8: end for
9: wt+1 = ∑

K
k=1

nk
n wk

t+1
10: end for
11: end procedure
12: procedure CLIENTUPDATE(k,w)
13: B← split Pk to set of batches
14: for all b ∈B do
15: w←w−η∇ f (w,b). gradient of loss on batch b
16: end for
17: return W
18: end procedure

NNs, we only transfer this knowledge into the federated
environment.

For the concrete task to be solved by our method we
have chosen classfication of EEG-signals using convolu-
tional neural networks (CNNs).

The main contributions of this paper are

1. a proof of concept for applicability of genetic algo-
rithms to federated training of NNs without using vul-
nerable gradients;

2. presenting Federated Neuroevolution (FNE) a simple
algorithm for the federated training, applying a dis-
tributed fitness function.

2 Neuroevolution

Evolutionary algorithms (EAs) follow the pattern of evo-
lution as it is observed by biologists in the nature. Ac-
cording to this, in an infinite cycle of life, the most apt in-
dividuals can produce offsprings possessing a potentially
slightly changed (mutated) mixture of their genoms that
might result an enhanced ability to face challenges in their
life. The main assumption in biology is that those individ-
uals survive and create descendants with a bigger chance,
who, in some aspects are superior to the others. The main
structure of an EA is sketched in Algorithm 2

Algorithm 2 EA
1: generate an initial population G0, i = 0
2: repeat
3: ∀individual j ∈ Gi : f j = f itness(individual j)
4: select parents from Gi based on their fitness
5: produce offspring generation Gi+1
6: ∀individual j ∈ Gi+1 : individual j ←

mutate(individual j)
7: until termination criterion is satisfied

EAs – as nature inspired methods in general – are often
used to discover very complex, high dimensional and/or
non-convex search problems, therefore, attempts to apply
these methods on optimizing NNs has a long history.

Recently, nature-inspired methods in relation with NNs
are used mostly for hyper-parameter tuning that includes
searching for an efficient architecture.

A big part of this rich literature is concerned specifi-
cally CNN-s, what we apply for our problem. Methods of
Genetic CNN [6], hierarchical evolution [7], large- scale
evolution [8], asynchronous CNN evolution [9] and auto-
matic CNN design [10] give graph based methods to de-
sign automatically the stack convolutional layers (skipping
potentially fully connected parts of the network) for image
classification trough genetical evolution of subsequent lay-
ers with various innovative encoding techniques.

In these scenarios, the learning itself is still based on
calculating the gradient and updating the model according
to that (backpropagation).

Using backpropagation though being based on calcula-
tion of gradients and on applying them on the weights of
the network is exactly what we want to avoid in our exper-
iment. Before the monocracy of derivative based train-
ing algorithms however biology-inspired training meth-
ods was a rather popular research topic, thus there is a
rich, though a bit dated literature concerned with our con-
strained problem. [11] and [12] give a summary of the
these initial approaches to neuroevolution (NE).

There is a very interesting branch of applications of NE
for general NN-s, that includes techniques to purely genet-
ically train the architecture along with the weights of the
networks. Among the most important algorithms that be-
long here it might be worth to mention NeuroEvolution of
Augmenting Topoplogies (NEAT) [13], and Hypercube-
based NEAT (HyperNEAT) [14] and its specializattion for
modular evolution of NN-s, HyperNEAT-LEO [15] and
Generative NE [16]. Despite of the power of HyperNEAT,
we decided first to focus on training a predefined architec-
ture, thus our method is based on more "traditional" NE
algorithms.

For applying evolutionary approach on an issue, one
need to specify an encoding of the problem, a selection, a
crossover and a mutation method as well as a fitness func-
tion.

In the rest of this section we shortly describe the stages
of an EA along with a couple of examples of how these
stages have been implemented in some work on the field
of NE, that gave inspiration to our algorithm. At the end of
the section we also describe approaches aiming at handle
overfitting that has been proven a serious problem in NE.

2.1 Encoding

Genetic algorithms work on sequence of features that
would be mixed, or altered according some granularity de-
fined over them. Thus the first step in solving a problem
genetically is to provide a description of the search space.



We refer to this description as encoding, that can be direct
or indirect.

Direct encoding is the more traditional way of problem
encoding, where sections of the genom more or less corre-
spond to specific parameters. Some of the early methods
hanlde some switches as well, that control the connectivity
of the specific perceptrons.

[17] proposes a system based on a parallel genetic al-
gorithm, ANNA ELEONORA, for learning both topology
and for connection weights. Topology Utilizes binary rep-
resentation of networks, with granularity encoding that is
handled through one bit flag to determine connectivity,
that is, whether the given edge is present in the recent setup
or not, followed by the substring of weights. These sub-
strings are ordered in a way that connections into the same
neuron are grouped together.

[18] presents a variant of EA applied immediately for
float weights. The input of the EA is a vector x of variables
, that are the parameters of the model (that is the weights
of the connections), the biases, and the newly invented
link switches. Link switches are variables, that control the
connectivity of the network, that is, negative value rep-
resents that the edge is switched off. The search space
is constrained by upper and lower bounds on variables
(weights): x ∈ I1× I2×·· ·× Id , where Ii = [li,ui], li,ui ∈R
for i = 1,2, . . . ,d.

Theoretically using the connectivity features of the en-
coding the first method is able to evolve the architecture
too. The issue with this approach to encoding is that the
problem space grows very fast as we scale up the network
(which we need if we want to solve complex problems).

Indirect Encoding The scaling problem of Direct Encod-
ing can be solved with Indirect Encoding, that instead of
separated representation of model parameters uses genera-
tive information. In HyperNEAT [14], which is maybe the
most important representative of this class, genes of the
genom are defining functions based on which weights can
be generated.

2.2 Fitness

The fitness function serves to specify how well a given in-
dividual performs on the problem to be solved. A higher
value of the fitness function means a better solution for the
problem, while lower fitness value reports a poor perfor-
mance. Fitness is often normalized thus a function that
produces a fitness value 1 for a perfect solution, and 0 for
completely wrong setup can work well. As an example
for a normalized fitness in ML scenarios, [19] proposes a
fitness function for NN defined as fnorm = 1

1+err , where

err = ∑
m
k=1

∑
d
i=1 |yi−ŷi|

md , with d denoting the output dimen-
sion, and m the number of examples, applying mean abso-
lute error.

2.3 Crossover

Crossover is a method that defines, how we combine in-
dividuals of a generation to create offsprings for the next
generations. One simple way is – as in [17] – to com-
bine the parts of parent individuals at some cutting points.
Another approach is presented in [18], where crossover is
actually taking the average of the corresponding weights
of the two individuals: x(t+1) = x1(t)+x2(t)

2 where x(t)s are
the individuals represented as vectors of parameters.

2.4 Mutation

Mutation methods serve for adding extra variance to the
individual genoms to enable them to discover a bigger part
of the search space. [17] provides a representation that
translates different topologies and encoding length into a
common string format granting compositionally different
descriptions. At mutations, it applies three separate prob-
abilities for swapping bits such that granularity bits, con-
nectivity bit, and weight bits. For effectively explore the
search space, it uses EA simplex [20], instead of taking
three populations and creating a fourth based on those.

In [18], where the possible values for genes are con-
strained, mutation is carried out according to the follow-
ing formula: x(t+1) = x(t)+Bδ , B ∈ R2 is a diagonal ma-
trix, with a diagonal Bii ∈ {0,1}, and li ≤ x(t+1)

i +δi ≤ ui.
Based on this rule, the algorithm generates three individ-
uals/chromosomes: at the first only one element of the di-
agonal of B can be one, at the second one a random num-
ber of diagonal of elements, and at the last, Bii = 1 for all
i = 1, . . . ,d. The one with the best fitness of these three
will replace the weakest one in the next population.

2.5 Overfitting

Using EA usually involves a high computation demand,
which can be reduced through decreasing the number of
evaluations of the model, that is the size of training data
on which we want to try out the models defined by a given
generation of the genetic algorithms.

Earlier applications of EA usually did not use separation
of data into training and test set (like [21], for example).
Practitioners soon realized, however, that models trained
this way perform poorly on not seen data points, revealing
the tendency of evolutionary methods to strongly overfit
on the training problems. This issue got in the center of
interest, when as an attempt to reduce run time they tried
to use subsets of the training data to evaluate individuals.

[22] made comprehensive experiments proving that evo-
lution is potentially able to extrapolate from the randomly
chosen test sets. A very promising direction to reduce
overfitting is random sampling, where at each generation,
a random subset of the training data is chosen and evo-
lution is performed based on the fitness on that sample.
The Random Sampling Technique (RST) [23] was origi-
nally used for speeding up the GE runs in [24], however, it



was already used for preventing overfitting. [25] and [26]
drive some experiments on RST, where they were testing
two parameters, the Random Subset Size (RSS) and the
Random Subset Reset (frequency of changing the subset).
They have found, interestingly, that the techniques per-
forms best when both these values are set to one, that is
in each iteration the fitness should be tested using a new
randomly chosen data point.

In [27], the authors present versions of “interleaved
sampling”, that means, instead of random subsets, fitness
at each round is evaluated alternating between one and all
training samples, with various switching frequencies. As
a result, they find that, on their test datasets, the best tech-
nique would be to switch in each round between single
sample and all sample evaluation.

3 The problem

3.1 Data

For the experiment, we used the EEG Database Data Set
[28]. The dataset contains 120 EEG trial data about 122
patients who either belong to the alcoholic or to the control
group. In each trial, the patients were shown one or two
images of the Snodgrass and Vanderwart picture set [29].
After showing them the stimuli, their brain activation was
measured for 1 second on 64 points at 256 Hertz. The
measurements are then labelled according to which group
they belong to, thus the task of the model to be built is to
predict which class of the two does a sample belong to.

3.2 Network architecture

For the network architecture to train, we decided to use
the shallow convolutional network from [30], that has been
designed specifically for EEG based multiclass prediction
problems. The essence of the network is three convolu-
tional layer that are intended to recognize specific patterns
in the signals. After two convolutional layers there is a
pooling layer and then comes the third convolutional layer.
On the output of this layer we applied batch normalization,
then added the output dense layer with sigmoid activation.

For the control experiment, we used the AdaDelta opti-
mizer [31] with Categorical Cross-Entropy loss function.
At training we used a batch size of 64, 1.0 as learning rate,
ρ = 0.95, and ε = 10−7.

The control model after 100 epochs achieved a valida-
tion accuracy of 95% (see Figure 1).

4 The proposed methods

The algorithm runs according to the process defined in Al-
gorithm 2. For starting off we create an initial generation
in which for each individuals initialize the weights of the
models randomly. From the initial generation then we it-
erate along the fitness-selection-crossover-mutation loop.
In this section we describe the particular methods we used
for the different stages.
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Figure 1: Baseline accuracy (backpropagation)

Selection The candidate set of individuals for crossover is
created by sorting the current generation’s models based
on their fitness and selecting the n− 1 fittest models for
crossover. The last parent selected for mating is not among
the fittest ones, but chosen randomly from the rest, to add
more variance.

Crossover functions Crossover method defines the way
according to which new individuals will be generated from
the parent generation.

In our method, we pick two parents randomly from the
pool of parents to produce the required offspring amount.

We run experiments with four crossover methods. The
first three require flattening the vector of weights. These
first three approaches are rather popular in EA research.

• Halving mix: In this approach, that is a simplified
version of the one in [17], the vector of values from
the parents are taken to create the offspring vector
by taking the first half of it from the first parent and
the second half from the second parent. This was the
original approach in [32] too. Formally:

{o f f springi}n
i=1 =

{
ai, if i≤ n/2
bi, if i > n/2

(2)

where n is the length of the model vectors and a =
(a1,a2, . . . ,an), b = (b1,b2, . . . ,bn) are the parent
vectors.

• Interleave mix: Here, the vector of values from the
parents are taken to create the offspring vector by in-
terleaving the two parent vectors. Formally:

{o f f springi}n
i=1 =

{
ai, if i mod 2 = 0
bi, if i mod 2 = 1

(3)

where n is the length of the model vectors and a,b are
the parent vectors.



• Mean mix: In this method, similarly to [18], the vec-
tor of values from the parents are taken to create the
offspring vector by taking the mean of the two parent
vectors at each index. Formally:

{o f f springi}n
i=1 = {

ai +bi

2
} (4)

where n is the length of the model vectors and a,b are
the parent vectors.

• Kernelwise mix: In this algorithms we used a more
coarse units for the crossover. In each convolutional
layer there are multiple kernels/filters that hold key
pattern information. Similarly, in case of fully con-
nected layers, input weights belonging to a single
neurons describes some pattern in the previous lay-
ers. These information portions are kept intact dur-
ing crossover. The offspring model is created by ran-
domly mixing the kernels inside each layer.

In our experiments, the first three crossover methods did
not converge. This could be because these approaches are
very low level and do not care about the network structure
or the patterns learned in the kernels.

Kernelwise mixing is a higher level approach, what we
tried after taking a look at how genetics works in nature. In
nature, the heredity is also a higher level mixing of genes,
instead of low level mix of organic molecules. Thus, traits
of the parents are kept intact. The resemblance to genetics
can be summarized as follows: the DNA is the network’s
weights, a gene is a filter and an organic molecule is a float
value. With this latest method, mixing the evolutionary
training was converging so we were applying this in our
approach.

4.1 Mutation functions

Crossover on its own results in generations that are only
combinations of the initial generation according to the de-
fined rules. Thus using merely crossover restrict the space
searched by the algorithm. To break this random alter-
nations of the offspring are applied in form of mutation
functions.

For defining a mutation function we must define the
number of mutated values and the scale of the mutation on
these values. For the former we used probabilistic value
determining the chance of mutation for each value in the
model. The latter is a float value determining how much is
the impact on each mutating value.

There are the following two main approaches we tried
for mutating values in a network:

• Mutate by offset (from [32]): Here, we add a ran-
dom value to the selected values. In our imple-
mentation, the offset was a random value between
[−mutation_rate,mutation_rate].

• Mutate by multiplication (from [33]): Here,
we multiply the selected values with a ran-
dom value. In our implementation, the mul-
tiplication factor was a random value between
[ 100−mutation_rate

100 , 100+mutation_rate
100 ].

After experimenting, we found a lot better convergence
rate with the second approach.

4.2 Federated fitness function

For fitness, which should be maximized during the evo-
lutionary training, we have chosen the Negative Mean
Squared Error (NMSE), that is defined as in Equation (5).

fNMSE(w) =−1∗ 1
n

n

∑
i=1

d

∑
j=1

(ŷ(i)j − y(i)j )2 (5)

where ŷ is the predicted output vector using parameters w,
y is the target output vector, d is the output dimension and
n is the number of examples. This a is slightly different
function, than the one in the example in section 2.2, but
it’s behaviour is the same( ∂

∂wi
fNMSE(w) ∗ ∂

∂wi
fnorm(w) >

0,∀w, i )
Applying the NMSE fitness for the original optimiza-

tion problem in Equation (6) our task will be to maximize
NMSE with respect to w:

maxw∈Rd fNMSE(w) =−
n

∑
i=1
‖ŷ(i)−y(i)‖2

2. (6)

4.3 Federated optimization and avoiding overfitting

In our setup the generation of individuals, that is the selec-
tion, the crossover and mutation happens at a centralized
location at a parameter server. The connected nodes of the
system participate in the optimization through evaluating
the different proposed setup. The fitness of an individual
can be calculated as a weighted average over the local fit-
ness values, in theory, during the training tough, as we will
see we should not use this measurement to prevent overfit-
ting.

Avoiding overfitting has been studied in [25, 22, 26, 27],
as it is discussed in Section 2.5. The main idea is that we
must not include the entire training set in the whole dura-
tion of the training. Instead, what most articles propose, is
to use subsets of the training data in each generation. The
training subset can be changed every generation or kept in-
tact for a few generations. Studies interestingly show that
randomly selecting a single training sample is also very
effective both for convergence and avoiding over-fitting.
Another suggested tweak is to include the full dataset ev-
ery once in a while.

Due the distributed nature of the problem, it was a rather
natural idea to incorporate the native data partitioning of
the federated setup, and to do the subset selection at a



higher level and treat the nodes as units of the subset cre-
ation, instead of specific data points. Thus, in each gen-
eration, the Federated Neuroevolution algorithm selects a
subset of the nodes for evaluating the fitness of the current
generation. To ensemble the evaluation sets, we have tried
the following three approaches:

1. Random single element for each generation: Here,
in each iteration we ask a randomly selected node to
evaluate the population’s fitness on a randomly se-
lected single training sample of it’s own.

2. Random subset for each generation: In this ap-
proach a random subset of nodes are selected to eval-
uate. We found this method the most efficient.

3. Moving window subset for each generation: Here,
we first order the nodes and then select a slice of the
list of nodes. This is the window and in every n gen-
eration we move the window to the right by 1.

The second approach of randomly selecting a subset of
nodes had the best performance. Even if, according to the
literature, method 1 works pretty well, in our experiments,
the training did not converge at all. The third method
seemed to be more promising, training convergence was
slower with this method than in the case of the second
method and the convergence also capped around 75% val-
idation accuracy.

The main algorithm Using the fitness evaluation meth-
ods we described in Section 4.3, the main run of the opti-
mization looks like the following:

• Validation: On the server, we retain a validation set
and in each generation we calculate and store the val-
idation accuracy of the fittest model of the current
generation. This is not far fetched as we can assume
that in a Federated setting the server driving the learn-
ing would already have a dataset of it’s own.

• Avoiding critical points: Based on the history of val-
idation accuracies, we check the last n entries for a
match with the current validation accuracy. If there is
a match, we conclude that the evolution has reached
some kind of critical point of the fitness function as
local maximum or saddle point. That is, however we
try to combine and mutate the individuals of the sub-
sequent generations, the fitness/accuracy does not in-
crease. Our hypothesis is, that in this case the pop-
ulation stuck in a higher region of the values of fit-
ness function, and in the neighbourhood defined by
our mutation rate the offsprings cannot find any in-
creasing directions. In this case we start gradually
increasing the mutation rate and the mutation chance
multiplier which is initially set to 1. Once the algo-
rithm is out of the local maximum, we reset the values
of the mutation rate and mutation chance to the orig-
inal values. There is an upper bound on the mutation
multiplier.

• Early stopping: We save the fittest model of each
generation, as an additional means to stop before we
overfit.

5 Results

We have run the described evolution algorithm for 5000
generations (Figure 2). For our setup, we observed that
the convergence was slow but steady, overall.

Minimum value Maximum value
Validation Accuracy 48.50% 85.28%
Fitness NMSE −0.3297 −0.0903

Table 1: Federated Neuroevolution Performance on the
EEG Dataset
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Figure 2: Running Federated Neuroevolution on the EEG
dataset for 5000 generations. Fitness is NMSE from equa-
tion 5, Accuracy is validation accuracy.

From a fully random state, the algorithm was able to
get to 85% validation accuracy as seen in Table 1. This
is, of course, a lot less than the baseline but still a good re-
sult considering using Neuroevolution for training weights
which is not the best method for training NNs.



6 Conclusion and future work

In this paper we described our experiments with a simple
method, what we call Federated Neuroevolution (FNE),
that is an application of EA adapted for FL of NNs.

We found that our method is applicable on the studied
scenario yielding some advantages over the traditional FL
methods.

An advantage of EA, compared to the gradient based
algorithms originated from [1], [34] or [2], is that it re-
quires even less client data transfer to the server. While
FedAVG exposes the client side data distribution and the
gradients during learning, FNE only expose the amount of
data points of the clients and an abstract fitness number of
the model.

The clear disadvantage is that the convergence is a lot
slower. We needed 5000 iterations of the algorithm to
get to an 85% accuracy which is still less then the base-
line’s 95%. At this point though our purpose was merely
to demonstrate the feasibility of derivative-free learning of
NN-s in a FL scenario.

In summary, the technique we introduced, trades off
learning speed for privacy gains. We may need a lot of
communication rounds which can be bad in a real-world
setting of mobile users, but for some use cases, like for
data from medical institutions, the rounds of communi-
cation is not of primary importance, while keeping data
privacy is essentials. Another aspect of techniques similar
to FNE that might be interesting, is that there is no tra-
ditional, backpropagation based learning, that is at client
side we can save this rather expensive stages of the learn-
ing process.

In the future we think there are several possible di-
rections to develop FNE to make it practical. First the
rather poor performance of the system might be improved
through experimenting with different submethods (selec-
tion , crossover, etc.)

Following the trends in genetic algorithms, the search
space could be extended to the network architecture too.
This way we could reduce the bias and variance introduced
by the model architecture that is chosen rather blindly at
the initiation phase of the learning.

Bearing in mind the main purpose of the experiments,
that is prevent the communicating the gradients, a range of
derivative free methods are available as Differential Evolu-
tion [35], Particle Swarm Optimization[36] or other biol-
ogy inspired methods like Artifical Bee Colony [37]. Sim-
ilarly, advanced optimization methods as CMA-ES[38]
might be applied.

It could be also interesting to experiment with more ef-
ficient utilization of resources, since in the current setup in
each round the vast majority of nodes is idle.

Acknowledgements EFOP-3.6.3-VEKOP-16-2017-
00001: Talent Management in Autonomous Vehicle
Control Technologies - The Project is supported by the

Hungarian Government and co-financed by the European
Social Fund.

Supported by Telekom Innovation Laboratories (T-
Labs), the Research and Development unit of Deutsche
Telekom.

References
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