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Abstract: This article describes the progress of a joint
project on Multilingual Automatic Speech Recognition us-
ing Deep Neural Networks, in which the Technical Uni-
versity works together with National Taipei University of
Technology in Taiwan. During the last year, we managed
to train multilingual models of combinations of Slovak
- English and Slovak - English - Chinese/Mandarin lan-
guages. In this paper, we are presenting the results of
the Slovak - English model based on deep learning with
and without language detection. Furthermore we present
new bilingual Slovak-English code-switching database for
bilingual systems training and testing. The results indicate
that the use of the language detection module can lower
the error rate of the multilingual model to the result simi-
lar to monolingual models that are generally better for the
monolingual tasks.

1 Introduction

Thanks to globalization, open culture and easy access to
information on the Internet, users are more exposed to the
multi-language environment than they were in the past. As
a result, foreign words began to appear in spontaneous
spoken language with foreign pronunciation (rather than
being adapted to Slovak pronunciation). This forced de-
velopers to test multiple language models that would be
able to recognize multiple languages at the same time they
often mix.

Multilingual LVCSR (Large Vocabulary Continuous
Speech Recognition) has made great progress in recent
years, notably by introducing Deep learning in Neural Net-
works (DNNs), [1, 2, 3]. In these works, DNNs were
taught separately to recognize many different languages
or to perform one primary role of speech recognition by
using several helper functions.
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Shared-hidden layer (SHL) [1] architecture where hid-
den layers are shared between languages, but the out-
put layer is language-dependent. Another approach is
used for Multi-component Recurrent Neural Networks
(MRNNs) [2] implementation, where bilingual automatic
speech recognition systems with a large LVCSR dictio-
nary and LIDs (Language IDentification) have been com-
bined and run in parallel to assist each other. In this work,
an alternative was used when using a Linguistically Uni-
versal / independent End-to-End model (LUE) [3]. Our
proposed method uses a language-specific gate mecha-
nism that allows the internal representation of a network to
be modulated in a language-specific manner. Similar ap-
proach was presented for Cantonese/Turkish/Vietnamese
language specific gate units described in [4]

2 Training bilingual speech models

2.1 Monolingual databases and acoustic models

In our previous work we used Julius for English [5] and
Slovak [6] local automatic speech recognition tasks. We
have decided to use the Kaldi tool 1 [7] (open source
Apache License v2.0) to create an English and Slovak
language recognizer based on Deep Neural Networks.
TaipeiTech Lab already has experience in implementing
and testing Mandarin / English DNN bilingual recognizer
[8].

The acoustic corpuses used for the training process of
the acoustic model of the English and Slovak languages is
shown in Table 1. In addition, a multilingual hidden layer
sharing recognizer (SHL) has been used as shown in Fig.
1.

The acoustic corpuses were divided to 3 parts: Training,
Development and Evaluation. More details are depicted in
Table 2

1http://kaldi-asr.org/doc/about.html
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Figure 1: Block diagram of multilingual recognizer with hidden layers sharing.

Table 1: Acoustical corpuses used for monolingual acous-
tic models training

DB Language Hours
LibriSpeech [9] English 475

TUKE-BNews-SK [10] Slovak 280

Table 2: Acoustical corpuses division for development and
evaluation purposes

Language Speakers Utterances
En-Train 2,682 132,553
En-Dev 97 2,703
En-Test 87 2,620
Sk-Train 8,230 112,039
Sk-Dev 1,000 31,824
Sk-Test 1,000 39,274

2.2 Code Switching

To train a bilingual speech recognizer, databases with sen-
tences where words in a foreign language are spoken with
a foreign accent are required. It means that commonly
the most words of the sentence is in the speaker’s native
language but he use also different language words as non-
native speaker. But it is not necessary, because for example
for children raised in bilingual family the native language
is difficult to find out.

The so called Code Switching occurs when a speaker al-
ternates two or more languages or language dialects within
a single conversation. This is a well-known meeting be-
havior in global technology-oriented companies where En-
glish or German is the official language. During meet-
ings, the native language is mixed with English words or
phrases used in the company for specific tasks, processes,
equipment, etc.

Other examples of bilingual speech can be found in
air traffic control when part of the communication be-
tween Slovak flight dispatchers with Slovak pilots is ac-
cording to international English standards and then a few

Table 3: Acoustical corpus of bilingual Slovak-English
data

Source % of English # of words Minutes
Tech. speech 13.71% 1174 8.2
Game review 8.7% 1528 13.1

Financial 8.8% 3843 28.9
Bodybuild. 4.2% 429 3.4
Pilot conv. 62.6% 484 11.8

Sk/En course 60.3% 2043 55.2
Total 23% >9500 121.9

polite phrases are heard in Slovak. Another example is
technology-oriented lectures or product and car tests, and
reviews and tutorials on English software. However, we
do not have to stick to a technology sub-group during lec-
tures, but English phrases often also appear in finance, so-
cial sciences or climate conferences. [11]

From such sources we create the first Slovak English
bilingual database, [11], which is currently annotated to
increase the accuracy of the language recognition system
(LID) but also to test the resulting bilingual system. Cur-
rent state of the database is depicted in Table 3.

2.3 Textual corpuses and language models

The language models were built to test the monolingual
and bilingual LVCSR engines on the Development (Dev
Set) and Evaluation sets (Test Set). The language model
for this research was provided by the project entitled "Au-
tomatic Subtitling of Audiovisual Content for Hearing Im-
paired"2 [12]. But this model was finally not used in the
tests presented in this paper, but it will be used in further
tests until the end of 2019.

In this work we presented results of the Slovak language
model trained using neural networks and from the train
part of the KEMT-BN corpus (112 thousand utterances)
not used in testing. That is also a reason the results are

2http://access.kemt.fei.tuke.sk/
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Table 4: Results of the monolingual LVCSR engines
TDNN Dev Set Test Set
Model WER [%] WER [%]
Slovak 17.46 17.76
English 8.05 8.63

Table 5: Results of the bilingual DNN LVCSR engines
without the language identification module (LID)

Sk/En Dev Set Test Set
Model WER [%] WER [%]
Slovak 17.35 16.15
English 8.71 9.19

Table 6: Results of the bilingual DNN LVCSR engines
with the language identification module (LID) used for the
gating mechanism

Sk/En Dev Set Test Set
Model WER [%] WER [%]
Slovak 17.32 16.13
English 8.64 8.97

worse then our broadcast news engine baseline [13], but
the important contribution is the comparison of monolin-
gual and bilingual systems results.

For English language the same approach was chosen so
132 thousand utterances from LibriSpeech database were
used for English language model training and also for pho-
netic vocabulary generating.

2.4 Bilingual LVCSR

For Slovak/English bilingual speech recognition we built
a bilingual LVCSR (as shown in Fig. 2). For this purpose
we shared the input and hidden layers across languages,
while the output layer is grouped, i.e., [OLVCSR

en ,OLVCSR
sk ].

For better discrimination of similar phonemes all neurons
in the output layer are tuned at the same time (i.e., single
task goal) in this work [14].

To help discriminate difference languages, an LID-
based gating mechanism was used to control the bilingual
LVCSR’s outputs [14]. Finally, the multilingual LVCSR
output scores are multiplied by their corresponding Lan-
guage IDentification - LID module scores.

For LVCSR training we used 43 MFCC feature vector
together with 100 dimensional i-vector. The TDNN with
850 neurons for each of the 6 hidden layers following the
AiShell/nnet3 recipe [15]. The time splicing was chosen
(-2,-1,0,1,2), (-1, 0, 2), (- 3,0,3), (-7,0,2) and (-3,0,3)).

For Language Identification training the same features
and time splicing was used to have even longer-term lan-
guage cues. The only difference is in number of neurons,
where we used 425 for 6 hidden layers.
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Figure 2: The block diagram of the bilingual share-hidden-
layer (SHL) neural networks.

3 Achieved results and future work

In Tables 4. 5. and 6 we can see the results achieved with
the proposed bilingual speech recognition system. The re-
sults are presented in WER (Word Error Rate), which is
the ratio of successfully recognized words to all words in
the test database and is expressed as a percentage [16].

It can be stated that thanks to the proposed multilin-
gual LVCSR and LID running in parallel and integrated
with the gate mechanism, it was possible to achieve results
comparable (see Table 6) with a single-language recog-
nizer (see Table 4.). These types of engines are generally
better at recognizing single-language data than bilingual
recognizer without the language identifier and gate mech-
anism (see Table 5). It should be noted that the bilingual
test database is still under development, so it was not pos-
sible to assess the results in a bilingual test when the words
of both languages and pronunciations are in one sentence.

This article describes the ongoing work of our two-year
project (2018 to 2019). We have now conducted the first
tests of bilingual and monolingual large speech dictionary
recognition (LVSCR) based on Kaldi [7] (TDNN, ResNet
or even DenseNet) and we are also planning to test new



technologies such as DeepSpeech3 [17] or TensorFlow4.
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