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Abstract: Models for the classification of vowels are of
continuing interest in both phonetics and for the develop-
ment of automatic speech recognition (ASR) systems. The
phonetics researchers favor linear classifiers based on for-
mants, whereas ASR systems have adopted deep neural
networks in recent years. In our work we compare the
performance of several kinds of convolutional neural net-
works (CNN) with the linear classifier on the task of clas-
sifying short vowel frames from TIMIT corpus.

Our primary hypothesis was that the CNN models
would prove significantly more precise than linear models,
including during consonant-vowel and vowel-consonant
transitions, while obviating the inherent difficulties of for-
mant tracking. We confirmed the hypothesis, although the
improvement was modest.

Our secondary goal was to investigate the possibility to
mitigate loudness sensitivity of CNN models, and deter-
mine whether the mitigation would have deleterious effect
on the classification performance of CNN models. Our ex-
periments indicate that the loudness invariant CNN archi-
tecture performs equally well to traditional spectrum based
convolutional models.
Keywords: MNIST, convolutional network, pairwise cou-
pling, one-on-one classification, binary classification,
dropout

1 Introduction

The difference in a single English vowel may convey
nearly a dozen different meanings (e.g. hVd examples in
[1]). Models that people use to differentiate vowels have
been under study for many decades, both in phonetics as
well as in automated speech recognition (ASR) systems.
Recognition models can be broadly divided between two
paradigms based on their use of the dynamic information
in vowel sounds.

First, one may idealize a vowel as a stationary sound.
This is a reasonable approximation since speakers can
stretch almost any vowel to many times its ordinary du-
ration without much effort. This view was adopted for
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instance in classical studies of English vowels in [2, 1], or
[3].

Second, one may view a vowel as a dynamic entity
evolving in time to both accommodate its acoustic sur-
roundings as well as to express inherent vowel dynamic.
This view fits much better to acoustics observed in con-
versational speech, where higher articulation rates lead
speakers to shorten stationary vowel centers to the point
of nearly eliminating them. This view was already hinted
on in [2], reiterated in [3], and thoroughly examined in [4].

A model belonging to the first paradigm is sometimes
called a frame recognition model, since it can be trained
based on extracted vowel windows (frames), and it can
categorize a vowel given a previously unseen sound win-
dow (frame). We will call a model belonging to the second
paradigm a segmental model.

There are two principal methodologies that are used to
create frame recognition models. For phonetics, the typi-
cal approach is to create a linear model based on the first
three formants, which are known to be key determinants
of a vowel quality. The second methodology is a powerful
class of classification models that has garnered much at-
tention in automated speech recognition systems, namely
convolutional neural networks (CNN) [5, 6].

The goal of this work is to compare, both qualitatively
and quantitatively, classification results obtained by the
classical phonetic approach based on formants and the
newer method based on convolutional neural networks
with the eye on suitability of adoption of CNN for pho-
netic analyses. A key potential problem is the known de-
pendence of deep neural network models on large amount
of data [7]. While large amounts of data are commonly
used in ASR research, phonetics datasets are usually much
smaller.

2 Dataset

The performance of classifiers is easiest to investigate in
cases when they are faced with a difficult recognition prob-
lem. A well-known pair of vowels that repeatedly shows
up in listening experiments as difficult to distinguish is the
aa/ao pair [1, 3, 8]. Therefore we looked for vowels that
could be confused with this pair of vowels.



word aa ae ah ao ax eh er ow uh
all 24 0 0 850 0 0 0 2 0

dark 858 0 10 6 0 2 0 0 0
wash 408 2 8 454 0 0 2 0 2
water 104 0 34 724 4 0 0 0 10

Table 1: TIMIT annotations of the first syllables in se-
lected words in SA1 sentences.

word ah ao ax ix ow oy uh
don’t 10 2 2 2 856 0 4
oily 0 90 0 0 66 674 0

Table 2: TIMIT annotations of the first syllables in se-
lected words in SA2 sentences.

We opted to use the TIMIT corpus [9], which has been
the focus of many automated speech recognition studies.
Compared to single syllable laboratory recordings, the cor-
pus has the advantage of being closer to natural speech,
and it comes with annotations dividing speech into indi-
vidual phonemes.

We used vowel segments of male speakers from SA1
and SA2 sentences of the TIMIT corpus (we exluded fe-
male speakers due to the well-known problem of F1 de-
termination for voices with high fundamental frequency,
as well as due to likely separate models required for dif-
ferent sexes [10, 11]). The segments were the first vo-
calic segments in the words “dark”, “wash”, “water”, “all”,
from SA1 sentences and “don’t”, “oily” from SA2 sen-
tences. We excluded segments from those instances of
words “oily”, which were annotated with three vocalic
segments. Tables 1 and 2 indicate phonetic annotation of
the segments chosen by the TIMIT authors. The tables
indicate that the words are prototypes respectively for seg-
ments /ao/, /aa/, /ow/ and /oy/.

In this work we used classes implied by the words,
rather than the classes provided by TIMIT annotators.
The primary reason is that those classes are less ambigu-
ous, and possibly more reliable [12]. This approach also
matches current trend in ASR to directly output lexical la-
bels [13, 14, 15]. Our decision makes little difference for
words “all”, “dark”, “don’t”, “oily”, because these are typ-
ically annotated with a single TIMIT phoneme label. But
it may affect classification results of the phonemes from
words “wash”, “water”, which were labelled mostly by
/aa/ and /ao/ annotations in TIMIT corpus.

The analysis window was set to be 24ms (384 sam-
ples). For each vowel altogether 21 frames were extracted
equally spaced within the segment duration as indicated
by TIMIT segmentation boundaries. Thus there were alto-
gether 109410 samples divided among TRAIN and TEST
datasets approximately in ratio 2:1. Extraction of formants
and LPC spectra was performed using phonTools R pack-
age [16]. We normalized features for CNN, LSTM and
k-NN models, which we will describe in detail in the next
section.
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Figure 1: Time evolution of the medians of the first three
formants (solid colors). Data of one speaker (MREB0) is
indicated in broken lines.

3 Classification models

Model creation was done using R software [17] and Keras
machine learning library [18].

3.1 Frame classification models

We considered three types of frame classification models.
The first was the logistic generalized linear model (GLM)
[19, 20], which is of kind commonly used in phonetic
studies of vowel qualities. The second one was convo-
lutional neural network [21], which is a powerful classi-
fier used in image processing, but also commonly applied
in deep learning ASR systems. We expected that a lin-
ear model may have a problem capturing consonant-vowel
and vowel-consonant transitions at the starts and ends
of the segments. Therefore we included also k-nearest
neighbor (k-NN) non-parametric classifier [19, 20], which
should be able to learn nonlinear boundaries.

Neural network models Currently, search for neural net-
work architectures is an active research field. We used ad
hoc designs as shown in Figure 2.

For convolutional networks we used architectures
shown in the upper part of Figure 2. All convolutional lay-
ers were 1-D with kernel of length 3; we used 5 neurons
on the first layer and 10 on the second. ReLU nonlinear-
ity was used both in convolutional and dense layers. The
dense layer had 32 neurons. Finally, we distinguish several
variations of the model based on provided spectral input:

• CNN-A. The input was 192 point Fourier log-
periodogram.

• CNN-B. The input was LPC spectrum of order 19,
sampled at 192 equally spaced frequencies.
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Figure 2: Schematic layout of the three deep neural net-
work architectures considered in the paper.

• CNN-C. The input was as in CNN-B, but intensity
normalized per equation (2) below.

• CNN-D. The input was as in CNN-C but limited to
components below 3,5kHz.

The purpose of the variations was to try providing data
to CNN which is closer to data that formant models use
(e.g. the third formant F3 almost never exceeds value
3,5kHz).

Finally, let us explain the rationale behind intensity-
invariant models CNN-C and CNN-D. If the sound source
is further away from the listener, obviously the sound is
quieter. In the context of frame classification, there should
be no change in prediction if the sound envelope is uni-
formly shifted by an equal constant. Admittedly, the pre-
diction may change, if more context were available, be-
cause then a decrease of intensity may constitute a phono-
logical contrast (e.g. syllabic stress). Let us note that any
model based on formants satisfies this invariance property,

by virtue of ignoring formant amplitudes. To achieve an
equivalent property with CNN, one can transform the in-
put tensor. Thus instead of supplying input vector s repre-
senting log-magnitudes of spectral components

s = (s1,s2, . . . ,sM) (1)

we provide as input the vector N(s) defined as follows:

N(s) := (s2 − s1,s3 − s1, . . . ,sM − s1) (2)

The key feature of this transform is that the sounds differ-
ing purely in intensity, say by d decibels, map to the same
input vector since

N(s1 +d,s2 +d, . . . ,sM +d) = N(s1,s2, . . . ,sM) (3)

Moreover, the topographic distribution of input vector
components, which is important for CNN, is maintained,
and only a very low frequency component is missing,
which should not be relevant for vowel identification.

3.2 Segment classification models

We considered two kinds of segmental models. First, we
supplied frame information from two frames: the onset at
10% and the offset at 90% position. This is inspired by
research of Nearey and Morrison [22], who indicated that
onset + offset data fits well with perceptual experiments.
We considered two implementations of the model, a CNN
with stacked onset+offset spectral information as shown in
Figure 2 upper right, and logistic regression (GLM) model.

Second, we trained LSTM (long short-term memory)
network [23] with Fourier and LPC spectra (denoted re-
spectively LSTM-A and LSTM-B) with architecture as
shown in the bottom of Figure 2. The LSTM layer used
4 units.

4 Results

We have opted for pairwise classification paradigm, where
we classify frames (or segments) from a pair of words at
a time. This decision is motivated primarily by our desire
to elucidate strengths and weaknesses of various models,
which may be confounded in the multiclass setting. We
note that the paradigm has analogues and applications in
phonetics (concept of minimal word pairs [24], forced A/B
choice experimental design [25], or comparing accents by
contrasting pairs of vowels in various words [26]).

4.1 Summary of accuracy with respect to location

Interpretability for classification models is highly desir-
able for recognition models in phonetics. For frame classi-
fication models it is possible to analyze their performance
based on the position within vowel. Summary analysis is
presented in Figure 3, from which we draw the following
conclusions:
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CNN-A 96.8 %
GLM 95.4 %

recursive neural
network models

LSTM-A 96.9 %
LSTM-B 96.2 %

Table 3: Average accuracy of frame and segmental mod-
els. Note that for frame classification, the input to CNN-A
is a 1D tensor consisting of a spectrum, whereas in seg-
mental classification, we joined onset and offset spectra to
form a 2D tensor as shown in upper right in Figure 2.

• CNN models are uniformly superior to the other two
classes of models (k-NN and GLM).

• There is negligible performance difference among
models CNN-A through CNN-D.

• Formant models (GLM as well as k-NN) in several
cases closely follow convolutional neural networks
(e.g. all-dark, or dark-wash, or dark-oily). This indi-
cates that very often formant positions are sufficient
for classification.

4.2 Accuracy improvement with segmental models

We trained also segmental models in order to gauge the ef-
fect of restricting classification to frames rather than seg-
ments. The results are summarized in Table 3.

Clearly, segmental models can make good use of extra
information, since all six segments are well classified. The
most likely explanation is the ability of segmental models
to discriminate consonant-vowel/vowel-consonant transi-
tions.

4.3 Multi-class classification

For ASR applications, especially for the systems based
on hidden Markov models [27], it is desirable to obtain
multi-class likelihoods. Passage from pairwise models
to multi-class ones can be achieved by any of multiple
pairwise-coupling techniques [28, 29, 30]. We performed
this coupling using the second method suggested in [29],
which is widely used in machine learning [31]. The multi-
class models were composed of 6 pairwise models trained
on frames from the first syllables of all possible pairs
of words “all”, “dark”, “don’t”, and “oily”. We used
those four words, because they are the prototypes of the
four phonemes /ao/, /aa/, /ow/, /oy/, that account for most

TIMIT annotations of our dataset (see Tables 1 and 2). The
likelihood plots are shown in Figure 4.

It is hard to argue which model predicted likelihoods
that are more correct, since there is no ground truth. Sub-
jectively, one may feel that CNN models are too certain
about their predictions, especially since the predictions are
considerably less smooth than that of the formants based
GLM model. The small size of the dataset may be a pos-
sible cause.

5 Conclusion

Our experiments indicate that it is feasible to construct
CNN models for frame classification for medium size pho-
netic corpora. The resulting models showed superior per-
formance to formant-based models even without extensive
parameter optimization, which is in accordance with find-
ings of a recent study on Korean vowels [32]. It is also
possible to make CNN models intensity-invariant akin to
formant-based models without noticeable loss of perfor-
mance. The only downside we observed (Section 4.3) was
that the likelihoods predicted by CNN models lacked tem-
poral smoothness compared to the formant model.
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