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Abstract: Since the universal approximation property of
artificial neural networks was discovered in the late 1980s,
i.e., their capability to arbitrarily well approximate nearly
arbitrary relationships and dependences, a full exploitation
of this property has been always hindered by the very low
human-comprehensibility of the purely numerical repre-
sentation that neural networks use for such relationships
and dependences. The mainstream of attempts to miti-
gate that incomprehensibility are methods extracting, from
the numerical representation, rules of some formal logic,
which are in general viewed as human-comprehensible.
Many dozens of such methods have already been proposed
since the 1980s, differing in a number of diverse aspects.
Due to that diversity, and also due to a close connection
of the semantics of extracted rules to the repsective ap-
plication domain, no rules extraction methods have ever
become a standard, and it is always necessary to select a
suitable method for the considered domain. Here, rules
extraction from trained neural networks is employed for
multimedia data, which is an increasingly important but
also increasingly complex kind of data. Three particular
rules extraction methods are considered and applied to the
modalities recognized text data and the speech acoustic
data, both of them with different subsets of features. A
detailed comparison of the performance of the considered
methods on those datasets is presented, and a statistical
analysis of the obtained results is performed.

1 Introduction

Despite the usefulness of artificial neural networks
(ANNs), however, full exploitation of their universal ap-
proximation property [12, 13, 14] has always been hin-
dered by the very low human-comprehensibility of the
purely numerical representation that neural networks use
to represent relationships and dependencies (in terms of
[11], that representation provides a high data fit, but a low
mental fit).

The mainstream of attempts to mitigate that incompre-
hensibility are methods extracting, from such a represen-
tation, rules of some formal logic. This paper is concerned
about methods that extract rules in the attributive logic us-
ing only typical relation symbols. On the other hand, many
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onther methods extract fuzzy rules. Such methods can be
found in the survey articles like [15, 8].

Logical rules are a frequent way of communicating
the knowledge between humans, and they are in general
viewed as human-comprehensible. From the point of view
of knowledge discovery in data, rules extraction from neu-
ral networks has to compete with methods for the ex-
traction of logical rules directly from data, most notably
with methods relying on various kinds of decision trees
[3, 18, 22]. The main reasons why rule extraction from
data via the intermediate step of a trained neural network
is attractive even in the competition of direct methods are:

• neural networks take into consideration all input vari-
ables at the same time, i.e., they perform a multivari-
ate search, not a search in a variable-by-variable man-
ner;

• in the case of data resulting from continuous random
variables, evaluation of the neural network deals with
data as continuous, however, rules are using condi-
tions which work as a discretization of input values
(for comparison, decision trees include discretization
of each variable from the very beginning).

Since the 1980s, many dozens of rules extraction meth-
ods have been developed for trained neural networks; a
good overview can be obtained from the survey papers
[1, 7, 16, 24] and the monograph [9]. In [1], it has been
proposed to characterize and categorize them according to
the following properties:
(i) expressive power: in the language of which logic

(Boolean / fuzzy, propositional / 1st-order) are the
rules expressed;

(ii) translucency: whether the rules extraction method
takes into account only the input-output mapping
learned by the network, or also the activities of hid-
den neurons;

(iii) portability: whether and in which way the rules ex-
traction method requires specific training of the neu-
ral network;

(iv) quality of the extracted rules;
(v) computational complexity of the employed rules ex-

traction algorithm.
Due to that diversity, and also due to a close connection
of the semantics of extracted rules to the respective ap-
plication domain, no rules extraction methods have ever
become a standard, and it is always necessary to select a
suitable method for the considered domain.



The main factor in the comparison of the rule extrac-
tion methods is the quality of the extracted rules. Let us
denote C (D) as ground truth classification of the data D,
NN (D) as a classification by NN of the data D, R(D) as a
classification by extracted rules of the data D, and the size
of the data m = #D. The survey paper [7] introduced four
quality measures from which we will use three: Accuracy
#{C(D)∩R(D)}

m ; fidelity #{NN(D)∩R(D)}
m ; and comprehensibil-

ity which is task-specific therefore more measures are pos-
sible, e.g., the number of the extracted rules, the number
of antecedents per rule.

To this end, three rules extraction methods have been se-
lected: ANN-DT [21], DeepRED [26], and HypInv [19].
They are applied to two modalities of a multimedia data
collection: recognized text data and speech acoustic data,
both of them with different subsets of features. A compar-
ison of the performance of the considered rules extraction
methods on those four datasets is presented, and statistical
analysis of the obtained results is performed. The selected
rules extraction methods are briefly reviewed in the next
section, and their performance on the considered multime-
dia data is presented in Section 3.

Experiments on multimedia data provide a proof of con-
cept of applicability of these methods to multi-class data
with very high input dimension. Our orientation towards
multimedia data is convenient because authors of rule ex-
traction methods do not report experiments with this kind
of data, and some modification of their methods are nec-
essary.

2 Selected Methods for Rules Extraction
from Neural Networks

2.1 DeepRED

Nowadays, the most promising decompositional method
seems to be DeepRED that can be applied to deep neu-
ral networks (DNNs), more precisely to multilayer percep-
trons (MLPs) of any depth. It was first published in [26],
but the author’s master thesis [25] describes it in more de-
tail. The core idea of the algorithm is to build decision
trees (DTs) on the activations of the considered NN as the
input and compose these trees, or rules derived from them,
into more complex ones.

We have performed modifications with the algorithm.
It originally used rules obtained from a DT. However, the
process of merging rules derived from DTs can be bet-
ter represented using a decision directed acyclic graph
(DDAG). A DDAG is adding properties within its struc-
ture, which will be advantageous. Not to mention higher
memory usage and more difficult evaluation of the rule
representation compared with the graph. If we consider
the largest DDAG structure with the depth l, i.e., a full-
grown tree with

(
2l−1

)
nodes, then the same rule set has

the size 2l with l terms each. Besides, evaluation of the
tree is done in at most l decisions, but rule evaluation may

need to evaluate all 2l rules in the worst-case scenario. We
have on achieved on the benchmark dataset MNIST re-
sults similar to those of the author of the original version
of DeepRED.

Let us introduce the following notation: L is the number
of layers in the MLP; Hl equals to the number of neurons
in the l-th layer; hl (X) denotes a list of activations of the
l-th layer for samples in data X ; t (Y ) denotes the division
of the data Y by the split t, i.e., the class True for sam-
ples which fulfilled the t and the class False for others. A
pseudocode of the algorithm is shown in Algorithm 1. In
the first step, the initialization of the DDAG that provides
a mapping from the last layer into the labels is done. In
[26], it was built from a set of rules IF hL (x)

i > 0.5 THEN
classi, but [26] was concerned only with a binary classifi-
cation problem where these rules are correct, unlike a mul-
tiple classes problem. Another possibility is to build a DT
on the activations of the last layer hL (X) as the input and
its classification by the MLP as the output. After initial-
ization, the for loop continues iterating backwards through
the layers. At step l, DTs are built for each split node in the
DDAG gl+1. Then, the DTs substitute the nodes inside the
DDAG, producing a new DDAG gl with inputs from the
lower layer. The substitution of a node by a DT is made
by reconnecting input edges to the node into the root of
the DT, and then all edges leading into the True and False
leaf node are connected to the true and false branches of
the initial node, respectively. Finally, the unsatisfiable and
redundant nodes are reduced. For such nodes, all samples
entering into the node are restricted to meet or not to meet
the node’s condition, respectively.

Algorithm 1 DeepRED pseudocode using DDAG.

1: function DEEPRED((hl (X))L
l=0)

2: gL← INITIALIZE_DT(hL (X))
3: for l = L−1,L−2, . . . ,0 do
4: Set T as the set of unique splits in ghl+1
5: for all t ∈ T do
6: X̃ ← hl
7: Ỹ ← t (hl (X))
8: DTt ← BUILD_DT(X̃ ,Ỹ )
9: end for

10: gl ← SUBSTITUTE(gl+1,(DTt)t∈T )
11: gl ← REMOVE_UNSATISFIABLE(gl)
12: gl ← REMOVE_REDUNDANT(gl)
13: end for
14: return g0
15: end function

2.2 ANN-DT

The ANN-DT method [21] is one of the simplest methods
taking into account only the input-output mapping learned
by the network. It builds a DT with axis-parallel splits, but
it obtains the input-output pairs for its training in such a



way that the NN generates the outputs for their respective
inputs.

The main difference from the traditional training
method is that more samples are generated if the node’s
training data contains a low number of samples. It prevents
from over-training the DT because its training relies more
on the information obtained from the NN model instead
of only the training samples. Algorithm 2 summarises the
whole recursive process.

Algorithm 2 ANN-DT pseudocode.
1: function BUILD_ANN_DT_NODE(node data D)
2: if D contains less samples then given threshold

then
3: D← D∪GENERATE_SAMPLES(Dtrain)
4: end if
5: a =SELECT_ATTRIBUTE(D)
6: t =SELECT_THRESHOLD(a, D)
7: Get data DTrue and DFalse for split (Xa > t)
8: if Stopping rule applies then
9: return leaf with data D

10: end if
11: Create node N with split X jk > tk
12: NFalse =BUILD_ANN_DT_NODE(DFalse)
13: NTrue =BUILD_ANN_DT_NODE(DTrue)
14: Set NFalse as false branch of N
15: Set NTrue as true branch of N
16: return N
17: end function

A vital component of the ANN-DT algorithm is the at-
tribute selection which should choose the most promising
attribute for the next generated split. In [21], the abso-
lute variation is used to this end. A significance of an
attribute is measured as the correlation between absolute
variation for the considered NN output and that attribute.
Unfortunately, the absolute variation is restricted to the
one-dimensional output which implies only binary clas-
sification problem. For each pair of samples xi, x j and a
function f monotonic between them the absolute variation
is equal to

∣∣ f (x j)− f (xi)
∣∣.

The training of DTs chooses splits with the lowest im-
purity. The impurity is computed as a weighted sum of the
same metrics for two sets weighted by the number of sam-
ples in the sets. Let us denote Dc the data with classifica-
tion to the class c and the size of the data m = #D. Instead
of commonly used metrics like entropy −∑

C
c=1 pc · log pc,

where pc = #Dc
m , the ANN-DT proposed using the vari-

ance ∑
m
i=1

(
yi− 1

m ∑
m
i=1 yi

)2
, where yi is the output of the

NN for the sample i. Furthermore, in [6], a gain of fidelity
was introduced as a metric for building a DT. It is defined
as 1− maxc∈C(#Dc)

m .
The NN defines classification on the whole input space.

Because of that, sampling is included, which adds more in-
formation about how the NN decomposes the input space
into the classes. Therefore, a DT built by the ANN-DT

mimic behaviour of the NN on the input space better than
a standard DT.

Often, network inputs are assumed to follow a proba-
bility distribution of a particular kind, and its parameters
are estimated from the training data. It is always neces-
sary to pay attention to the data distribution and sample
accordingly. Moreover, sampling for the ANN-DT is spe-
cific because samples cannot be arbitrary; conditions on
antecedent nodes of a newly created node restrict them.
Because of that, the samples need to be tested whether they
fulfil the restrictions, and only those that do are accepted.

2.3 HypInv

The NN defines areas of the input space belonging to the
same class, and boundaries between these areas are called
decision boundaries. A classical DT approximates those
boundaries by hyperplanes parallel to axes. On the other
hand, the HypInv takes general hyper-planes for the NN
approximation [19]. For this purpose, the derivative of the
mapping computed by the NN is used.

The authors described this method for binary classifi-
cation and stated how it could be extended for multiple
classes. However, their extension is not generally valid, so
we propose other technique at the end of this subsection.
Until then, only two classes are considered. Another vari-
ant of the original method is that the rules are represented
by a DT which is build using only linear splits that were
found instead of generating the set of rules directly. For
binary classification, the NN will be assumed to compute
a function f :Rn→R2, where the outputs are nonnegative,
and their sum is one.

The authors originally added oblique splits to rules for
each class using conjunction or disjunction. This leads to
generating only as many rules as there are classes. How-
ever, by adding a new term, the previous structure can be
forgotten, e.g., the addition of the disjunction with some
subspace leads to forgetting all previous splits in it. Imag-
ine that we have two clusters belonging to the same class.
Rules already separate the first cluster. However, the algo-
rithm works locally, so it finds a new split on the decision
boundary of the other cluster. If this newly generated split
adds a sub-space that contains the whole first cluster, then
the information about the first cluster separation is forgot-
ten.

The algorithm works as follows: At first, a point x1 is
initialized. The next step is to find the closest point to x1
on the decision boundary, denoted as x0. Then, the hyper-
plane containing x0 and perpendicular to the direction x1−
x0 is created. Finally, the hyper-plane split is added to
the set of possible splits on which a DT is built. If the
precision of the DT exceeds a predetermined threshold,
then it is returned; otherwise the loop continues. In theory,
the loop continues until the desired fidelity is achieved, but
in practice, the number of loop cycles is restricted.

The whole process is summarised in Algorithm 3. In
the following, steps 5, 10, and 12 will be described. In



addition, in step 9, building a DT uses all available oblique
splits and entropy as an impurity measure.

Algorithm 3 HypInv pseudocode.
1: function HYPINV(neural network f , train data D, in-

put space I)
2: x1← INITIALIZE_X1(I)
3: S← empty set
4: repeat
5: x0← FIND_CLOSEST( f , x1)
6: n← x1− x0
7: β ← n · x0
8: S← S∪ (n · x > β )
9: DT ← BUILD_DT(S, D)

10: x1← GET_NEXT_X1(DT, D)
11: until Fidelity of DT on data D excedes threshold
12: DT ← REDUCE_ATTRIBUTES(DT, D)
13: return DT
14: end function

Closest point on the decision boundary At first, we have
to know how is the decision boundary described in the in-
put space. For the binary classification, the answer is sim-
ple. It is defined as {x ∈ Rn | f (x) = (0.5, 0.5)}, provided
Rn is the input space. This set describes a surface in the
input space. In addition, every line connecting a point out-
side that surface and its closest point on the surface is or-
thogonal to the tangent of the surface at the closest point.

Now, consider the error of the NN for a sample x com-
puted as E (x) = 1

2 ‖t− f (x)‖2, where t is the desired tar-
get, which on the decision boundary equals (0.5, 0.5). Be-
low, several ways to obtain the closest point will be intro-
duced.

The first way is to cover the decision boundary by sam-
ples evenly by an evolutionary algorithm [19]. The advan-
tage is that this process can be done once at the beginning
of the algorithm. Then the closest point is selected from
obtained boundary points. However, representing the sur-
face by its points is as good as the density of the points
on it. The density decreases exponentially with the dimen-
sion of the input space. Hence, it is not a proper method for
high dimensional spaces encountered in multimedia data.

The second way uses the inverse to the input-output
mapping computed by the feedforward network [19]. Be-
cause back-propagation leads to local optima, the inverse,
in general, does not give us the closest point on the bound-
ary but just a point on it.

However, a boundary point can be moved along the
boundary in the right direction. The idea is based on cal-
culating the direction of a tangent, and the point is itera-
tively moved in that direction. Sliding along the boundary
returns the point x(t) from which the x1 is in the direc-
tion orthogonal to the decision surface. However, it does
not have to be a point on the boundary. Therefore after
sliding, the inverse mapping is used again for the returned

point.
The last way is to modify the error by adding a term rep-

resenting the distance to x1, i.e., Ed (x) = 1
2 ‖t− f (x)‖2 +

µ ‖x1− x‖2, where µ is a trade-off weight. This approach
is forcing x to be simultaneously close to the border by
the first term and close to x1 by the second term. Unfortu-
nately, there is no guarantee that the algorithm of Ed min-
imisation leads to the global minimum. So, the found point
does not need to have either of the desired properties.

The authors tested these approaches on data with in-
put dimensions under 60 without any problem [19]. But
inputs with higher dimensions can make an evolutionary
algorithm inefficient due to the low density of generated
samples covering the decision boundary. So they cannot
be used with the multimedia data with hundreds or thou-
sands of features. For those, we found the modified error
the most suitable. On the other hand, the process of gener-
ating points on the decision boundary is the only way how
to deal with non-differentiable NN.

Choosing the next point The next selected point x1 has
to be wrongly classified by current output classifier, i.e.,
a DT with oblique splits. Originally in [19], two ideas
were introduced: The first idea is to take a training sam-
ple which is wrongly classified. The second is to generate
new samples randomly and to choose the sample that lies
the farthest from the boundary among those wrongly clas-
sified. In our modification that uses a DT, we propose to
find the farthest point from a set of samples attached to the
leaf with the largest error.

Attribute reduction So far, the algorithm produced an
accurate DT with oblique splits. However, these splits
are not much comprehensible because they contain the
weighted sum of all attributes. There is no a priory reason
to assume that some attribute is missing, i.e., its weight
is zero. On the other hand, zeroing small weights may not
change the output of the DT. In the original article, authors
succeed in testing the attribute reduction with a specified
minimal absolute value. However, it is not clear how to
choose a proper threshold for weights zeroing.

Multiple classes The main disadvantage of the previous
method is that it cannot deal with more than two classes.
In binary classification, the above simple condition f (x) =
(0.5,0.5) is fulfilled by each point at the boundary, but in a
multi-class case, the situation is more difficult. Imagine an
NN with softmax output. A change in the classification of
the sample happens when the index corresponding to the
maximal output changes. However, it can be any of the
other indexes, not just one.

Let us look at the situation when we got a point x0 ∈Rn

from a class c ∈ C that is wrongly classified. Then we
are looking not for any decision boundary but a decision
boundary between the class c and all the others because



the change of the classes happens on this boundary first.
Let us define a function fnew, corresponding to the binary
classification between class c and the others

f 1
new (x) = f c (x) ,

f 2
new (x) = maxi∈C′

(
f i (x)

)
,

where C′ = C r {c}. However, function fnew is not nor-
malised to sum up to one, so a linear transformation is ap-
plied, which results in the final function fc =

fnew
f 1
new+ f 2

new
that

describes two states - the sample is in class c or not. Notice
that function fc is not differentiable due to the maximum
in f 2

new. On the other hand, this maximum is changing its
derivatives only in points where ∃ j, i ∈Cr{c}

(
f j = f i

)
.

In addition, the area where this occurs has volume zero in
the input space. Hence, a continuous random variable as-
sumes values in this area with the zero probability. There-
fore, the gradient can be computed with probability 1.

To sum up, dealing with multiple classes changes the
algorithm in one way. The NN output no longer defines
a decision boundary, but a new function fc does, which
is described above for any class c. In the algorithm, fc
is always used if the considered x1 belongs to the class c.
Other steps remain unchanged.

3 Application to Multimedia Data

3.1 Data

The data comes from the Week of Science and Technol-
ogy, a two-week science festival held by the Academy of
Sciences of the Czech Republic. Because lectures are pop-
ular science, the slides of their presentation contain ac-
companying text or pictures, and a slide with equations
only is rare. For each lecture, a video of the lecture, and
the audiovisual footage have been recorded, representing
altogether approximately 165 hours of multimedia con-
tent. We restricted attention to lectures in the Czech lan-
guage; these are 124 lectures, each with footage around
an hour. Each audio and visual recording is divided ac-
cording to the sequence of the projected slides. This pro-
cedure leads to more training samples, which is desirable.
From now on, we denote the content relating to one slide
as a document. Each document has its multimedia con-
tent which consists of recognised speech from the audio
recording, recognized characters on the projected slide by
optical character recognition (OCR), and others, which we
do not use. A class is assigned to each document accord-
ing to the scientific field of the whole lecture. By doing
so, a noise is added to our data because some lectures deal
with the multi-field topic so their slide should be classified
differently. In practical use, classification of the lecture
will be an induction of its slides classification, e.g., taking
the most occurring class in a presentation. Further, we will
refer to the text recognized by audio speech recognition as
audio.

Table 1: Proposed classes of documents and their frequen-
cies.

Class name Number of documents
Chemistry 1534

History 644
Biology 3537

Information technology 3573
Physics 3543

Art 391
Social sciences 1222

Geography 1104
Mathematics 294

Other 311

Classes Lectures were divided into thirteen classes ac-
cording to their field, and four of them were merged into
one because they had only a few documents. The classes
with their numbers of documents are listed in Table 1.

Data processing Text from the slides was extracted by
Tesseract, which has main concepts described in [23].
Google Speech API recognized speech. For more details
of processing the original audiovisual input into the tex-
tual form, we refer to the master thesis [17] because it is
not the main objective of this work.

Text pre-processing The Czech language is a morpho-
logically rich language. So it is convenient to use a stem-
ming algorithm to lower the number of different words
occurring in the dataset. Therefore, the recognized audio
text was stemmed by a stemming algorithm for the Czech
text provided by Petr Chmelar and David Hellebrand from
the Faculty of Information Technology, Brno University
of Technology [5]. However, the OCR text contains a lot
of unrecognized characters, so the stemming deletes many
characters, leaving many stemmed words of the OCR text
of the document empty.

Moreover, in the OCR text, there are many recognized
numbers, but they are often used as particular information
linked to the topic of the lecture, e.g., as altitude, era, or
as indexes. There are three main ways how to deal with
numbers. Firstly, do not process numbers at all. Secondly,
delete words containing numbers as was done in [17]. The
third option is to substitute the number with a unique char-
acter as was done in [10]. We prefer the third option be-
cause no valid information about the field will be lost.

Even though data consists of text, it has to be converted
into a numeric input on which the NN can be trained. For
this purpose, several methods are available. One of them
is the substitution of words by the vectors, so-called words
embedding. The state-of-the-art embedding is obtained by
the sub-word information skip-gram model [2]. However,
this approach requires the use of convolutional neural net-
works, which are not supported by implemented methods.



Therefore, we chose to use another conversion, described
below.

Bag of words The method bag of words (BOW) uses a
dictionary of all words comprised in data. The document
is represented by a vector with a length of the size of the
dictionary containing integer values representing frequen-
cies of words that occur in the document. So we lose in-
formation about word order by this procedure.

Moreover, this method has two more drawbacks. One
drawback is that the dictionary of all used words could
be large. This drawback can be partly solved by sub-
stituting words with low frequency by a unique word or
by some other dimension reduction. The second draw-
back arises with documents with different length where
one word could have lower frequency just because of the
length of the document. This issue could be solved by
applying weights instead of frequencies. Aside from the
fact that frequencies depend on document length, there are
words in all languages that are very frequent but do not
carry any information, e.g., articles in English. So there is
also a reason to decrease the weight of frequent words.

A method called term frequency - inverse document fre-
quency (TF-IDF) has been developed to solve issues with
document length dependence. The article [20] offers many
ways how to weight words in the BOW method. In the fol-
lowing, the variant used in [17] will be described. Let us
denote the frequency of the word τ in the document δ as
cδ ,τ , then the TF-IDF value of this word τ in document δ

denoted as hδ ,τ is computed by

hδ ,τ =
cδ ,τ

maxτ

(
cδ ,τ

) · log
(

d
dτ

)
, (1)

where d is a total number of documents, dτ is the total
number of documents which contains at least one term
τ . The TF-IDF value is higher if the relationship between
term τ and document δ is stronger. Finally, stemmed audio
text converted into TF-IDF form will be used for the lec-
ture classification. However, the dictionary for the OCR
text is too large, and the vector representations of doc-
uments are sparse. Therefore, for further processing of
OCR data, we use the approach described below.

N-gram In natural language processing (NLP), an N-
gram usually means sequences of N words [4]. A BOW
model of these sequences is then produced. This is a way
how to incorporate the meaning hidden in the context.

However, there is another way to see the N-gram model
the character N-gram. It is considering sequences of char-
acters instead of sequences of words. This approach is
recommended in [4] for OCR text since OCR text is gen-
erated character by character. Because the N-gram model
is very close to BOW model, the same method to shift from
frequencies to weights is applied here, too. Therefore, the
N-gram input derived from the OCR text transformed by
TF-IDF will be used as OCR input data.

Dimensionality reduction The inputs described above,
namely BOW audio data and joined character N-grams
with N ∈ {1,2,3} of OCR data, have very high dimension-
ality: 34910 and 20586, respectively. For them, we have
15412 and 16965 non-empty samples. Because of the dis-
proportion of the dimensionality and number of samples,
a dimension reduction procedure is appropriate. However,
standard methods like principal component analysis trans-
form the coordinate system, and rules in the new coordi-
nate system are not comprehensible. So we focus on meth-
ods that select the best attributes instead, through leaving
out rarely occurring words, more precisely, through re-
placing all of them with a unique word.

On the other hand, building a DT or more precisely
ANN-DT also provides some measures to compare at-
tributes and their possible contribution to the classifica-
tion. For example, one of these measures is entropy, which
we use to choose the attributes that provide the split with
the highest entropy decrease. This dataset will be de-
noted as fsen_500 and fsen_1000, where 500 and 1000
best attributes were selected, respectively. In addition, the
dataset with all available attributes will be denoted as all.
Also, the built DT with multiple-class training data pro-
vides attributes that are needed to perform its classifica-
tion. Therefore, we have taken attributes occurring in the
DT as the second feature selection method. Correspond-
ing datasets will be denoted as fsdt_0 and fsdt_1 where the
indexes that occur not at all and at most once in the DT
were deleted. It leads to the dimensions under 1500 and
500, respectively, for both audio and OCR datasets.

3.2 Experiment Design

The rule extraction process is separated from NN training
to mimic a real word problem where a NN is trained at
first. Only afterwards, if it has satisfactory performance,
then the rules are extracted. The employed methods are
focused on the MLP, so the experiments will be done only
on those architectures. The architectures will be described
by the number of neurons in the hidden layers separated
by a dash.

As was mentioned in the previous section, we used a
TF-IDF representation of stemmed text obtained from the
audio recording denoted as audio. Apart from that, the
TF-IDF representations of 1-, 2- and 3-grams of OCR data
were joined into one dataset. NNs were trained on one
dataset without reduced dimension (all) and four datasets
with reduced dimension based on index occurrence in DT
(fsdt_0 and fsdt_1) or entropy ordering (fsen_500 and
fsen_1000). Since each of those combinations is consid-
ered both for the OCR data and for the audio data, there
are altogether 10 datasets.

The first experiment conducted on each of the ten
datasets has used NNs with architectures 100−30, 200−
60, and 80− 30− 30. Figures 1a and 2a show the results
of the NNs for audio and OCR datasets, respectively. The
dimension reduction on the audio data seems to reduce the



(a) The first experiment with all datasets.

(b) The second experiment exploring the architectures similar to
the 100−30 on datasets with satisfactory performance.

Figure 1: Performances of the trained NNs on audio data
along with the data with reduced dimensionality.

performance of the NN substantially. However, even with
those data, the best NN achieves around 80% of validation
accuracy, which we also considered as a good result. The
situation is different for the OCR data, where dimension
reduction helps the classifier to increase its performance.
The OCR results are shown in Figures 2. Looking at the
difference between NN architectures, it seems that archi-
tectures 100− 30 and 200− 60 are pretty much compa-
rable for audio data and the architecture 200− 60 has a
higher variance in the OCR domain. A second experiment
was conducted to explore a parameter space around the ar-
chitecture 100− 30, and it is shown in Figures 1b and 2b
for audio and OCR datasets, respectively.

The final selected architecture for the audio data was
chosen 80− 20 for input without feature selection even
though the architecture 100− 30 has a similar perfor-
mance. For the audio data with feature selection fsdt_0
and fsen_1000, the same architecture 100− 30 was cho-
sen. In the OCR domain, we decided to use only the data
fsdt_0 with the architecture 80− 30, which does not have
any classification accuracy under 50%. Other datasets will
not be considered due to their low NN classification accu-
racy.

(a) The first experiment with all datasets.

(b) The second experiment exploring the architectures similar to
the 100−30 on datasets with satisfactory performance.

Figure 2: Performances of the trained NNs on OCR data
along with data with reduced dimensionality.

3.3 Results and Their Discussion

The experiments will be divided into narrowed binary
classification and full multiclass classification. The binary
classification differentiates most often occurring class
(information technology) against the others, and the same
number samples as the samples from the most often
occurring class is randomly selected. Only the data on
which the corresponding best NN has a good performance
will be considered, namely: all, fsdt_0, fsen_1000 for
audio data, and only fsdt_0 for OCR data. The rule
extraction method will be applied with several settings.

In particular:

• Attribute selection using absolute variation combined
with variance as impurity measure denoted as absvar-
var, and only impurities entropy, a gain of fidelity,
and variation without attribute selection denoted as
entropy, fidgain, and var.

• For DeepRED, we chose always to build an initial DT
and experiment with the activations omitted before
the softmax layer.



• For HypInv, we emphasize two numbers which rep-
resent the number of generated splitting hyper-planes
and the maximal depth of the tree, respectively.

In addition, we want to measure the comprehensibility of
the extracted rules. For this purpose, we selected four val-
ues: The number of rules, the number of attributes used by
the whole set of rules, the mean rule length, and the mean
number of attributes occurring in each rule. The number
of attributes occurring in the rule describes to what extent
rules are using each attribute, e.g., axis-parallel rules have
at most the lower and upper bound for each attribute, i.e.,
the number of attributes is half in comparison with rule
length.

Also, the fidelity, fidelity computed on validation data,
and validation accuracy are computed. All of those values
are presented in the combination of their mean and stan-
dard deviation except for the number of rules in the case
of DeepRED where the minimum and the maximum is in-
dicated.

The results of the experiments described above are
shown in Table 2. Friedman statistical test with Nemenyi
post-hoc test on the significance level 5% reveals which of
the found differences between methods and their settings
are significant. Below, these differences are described.

Firstly, from the view of fidelity, significantly worse
than all the other methods appear to be DeepRED and
the absvar-var variant of ANN-DT. On the other hand,
Hypinv and ANN-DT with entropy and var as parame-
ters were pretty good and no difference was revealed be-
tween them. The validation fidelity and accuracy lead to
the same conclusions. HypInv was recognized as a method
generating the significantly shortest rules with the most of-
ten occurring features among employed methods. More-
over, DeepRED appears to have many features per rule,
too. DeepRED also has a significantly higher length of the
rules than all the other methods.

Furthermore, Table 2 shows that methods that using
axis-parallel splits fail to have a good performance for all
audio data. Because those methods included the ANN-
DT, which is almost identical to the conventional DT, we
assume that decision trees have low accuracy on given
datasets. The inefficiency of the DT also appears in the
last step of the DeepRED method. Table 3 provides the
fidelities of the DDAG constructed by the DeepRED be-
fore and after the last substitution was made. It shows that
the error of the DeepRED algorithm stems from the last
step where DTs are built on the input data. Also, Figure
3 confirms this statement by showing that the distribution
of the accuracy is in the last step shifted to lower values
compared to the last but one step.

Moreover, some of the methods can be applied to the
whole ten class datasets. Table 4 shows results for such
methods, i.e., ANN-DT and HypInv. Settings absvar-var
and var were omitted because they can be only applied
to binary classification. The DeepRED is not covered be-
cause experiments had shown that its performance is very

Figure 3: Histograms for sub-trees built in the DeepRED
in the last but one and the last step.

low for multiple classes classification, and its computa-
tion time requirement is enormous. The behaviour of the
ANN-DT method is similar to binarized data because it
performed well on the OCR data. However, the Hyp-
Inv method achieved validation fidelity significantly bet-
ter than all other methods, which we believe caused by its
ability to find more complex splits than axis-parallel, and
those splits describe data more precisely. In addition, for
the audio data without feature selection, HypInv exceeds
the predetermined fidelity threshold of 95% in each ob-
servation. However, it leads to the largest difference in
fidelity between training and validation.

In addition, Table 5 shows an example of extracted rules
for each of the employed methods from the binary class
audio data without feature selection. The most relevant
feature in DeepRED is with subscription pocitact because
it is a world that is almost the same as počítač - the com-
puter in the Czech language. Moreover, the rule of the
HypInv is inhibited by the word earth, which also looks
promissing. However, other words cannot be simple re-
vealed why they occur. For example, the world bunout
with no meaning in the Czech language maybe there just
because it provides some random class separation.

4 Conclusion

The available methods for rule extraction from trained
neural networks provide a wide range of possibilities. We
chose to implement two methods taking into account only
the input-output mapping learned by the network, i.e.,
ANN-DT and HypInv that deal with any NN. Also, a
method called DeepRED was implemented. Experiments
have shown that these methods differ in their performance
on different datasets. In addition, for methods that are
using DT, i.e., ANN-DT and DeepRED, it is crucial to
have data on which DT achieves satisfactory results. The
most consistent performance was observed for the Hyp-
Inv method. However, its expressive power is generally
not as good as that of other implemented methods. On the
other hand, DeepRED results were the least consistent be-
cause it generated DDAG with random depths which leads
to many long rules in some cases.



Table 2: Comparison of the implemented methods on the binarized datasets. Averages and standard deviations are com-
puted by 10-fold cross-validation. Cells in the column rule_count where the number of rules is marked with * are inter-
vals in which the value occurs. Columns denote fidelity (fidelity), validation accuracy (val_accuracy), validation fidelity
(val_fidelity), the number of rules (rule_count), the number of attributes used by the whole set of rules (index_count), the
mean rule length (rule_len), and the mean number of attributes occurring in each rule (rule_index), respectively.

fidelity (%) val_fidelity (%) val_accuracy (%) rule_count index_count rule_len rule_index
Data Method Settings

audio_stem_all

fsdt_0

ANN-DT

absvar-var 53.18 ± 0.42 53.14 ± 1.93 50.11 ± 2.09 14.9 ± 27 12.9 ± 25 2.06 ± 3.43 2.06 ± 3.4

entropy 57.23 ± 1.38 56.78 ± 2.13 54.93 ± 1.59 10.6 ± 6.3 9.40 ± 6.2 4.05 ± 1.72 4.01 ± 1.7

fidgain 58.31 ± 1.31 57.07 ± 2.96 54.33 ± 2.76 26.5 ± 4.7 22.8 ± 4.7 5.80 ± 0.36 5.76 ± 0.39

var 57.01 ± 1.26 56.37 ± 2.14 54.71 ± 2.02 11.0 ± 4.2 9.40 ± 3.6 3.94 ± 1.10 3.94 ± 1.1

DeepRED
build_first 54.18 ± 1.87 53.25 ± 3.58 52.55 ± 3.03 2 - 503* 7.80 ± 6.1 4.90 ± 3.61 4.17 ± 2.7

del_last & build_fist 52.86 ± 2.62 53.34 ± 3.48 53.37 ± 3.03 57 - 6060* 22.7 ± 8.1 12.01 ± 2.87 10.7 ± 2.4

HypInv 20-6 80.39 ± 1.86 80.76 ± 3.00 77.07 ± 2.53 7.30 ± 3.6 1533 ± 1.9 3.44 ± 0.95 1533 ± 1.9

audio_stem_all

fsen_1000

ANN-DT

absvar-var 52.01 ± 0.59 51.92 ± 1.88 50.11 ± 1.70 17.3 ± 22 15.3 ± 21 2.99 ± 3.86 2.98 ± 3.9

entropy 58.55 ± 1.30 57.93 ± 1.77 55.25 ± 1.77 6.50 ± 2.4 5.40 ± 2.3 3.06 ± 0.62 3.06 ± 0.62

fidgain 56.02 ± 1.23 54.78 ± 2.04 53.05 ± 1.57 24.7 ± 7.6 21.8 ± 6.2 5.82 ± 0.54 5.72 ± 0.52

var 58.83 ± 1.10 58.12 ± 1.78 55.41 ± 1.96 11.3 ± 5.7 10.1 ± 5.5 4.49 ± 1.68 4.49 ± 1.7

DeepRED
build_first 52.05 ± 3.56 51.49 ± 3.16 52.38 ± 2.04 9 - 1361* 14.7 ± 8.0 8.50 ± 4.24 7.38 ± 3.4

del_last & build_fist 49.78 ± 1.65 49.93 ± 1.14 51.76 ± 1.26 2 - 13278* 23.9 ± 11 12.44 ± 5.00 10.6 ± 4.2

HypInv 20-6 77.74 ± 2.54 77.76 ± 2.61 73.14 ± 1.82 11.6 ± 6.5 999 ± 0.3 3.90 ± 1.22 999 ± 0.32

audio_stem_all

ANN-DT

absvar-var 51.15 ± 0.93 50.87 ± 2.70 49.71 ± 2.16 2.20 ± 2.7 1.20 ± 2.7 0.74 ± 1.60 0.74 ± 1.6

entropy 59.78 ± 0.90 59.59 ± 2.63 55.84 ± 2.07 6.60 ± 2.9 5.40 ± 2.8 3.37 ± 1.28 3.33 ± 1.3

fidgain 58.42 ± 2.90 56.63 ± 3.64 55.73 ± 3.97 27.5 ± 11 24.2 ± 9.7 5.75 ± 0.92 5.71 ± 0.87

var 59.82 ± 0.88 59.69 ± 2.72 56.01 ± 2.21 8.10 ± 5.6 7.00 ± 5.3 3.45 ± 1.51 3.45 ± 1.5

DeepRED
build_first 51.54 ± 1.95 52.16 ± 2.68 51.93 ± 3.13 3 - 75* 7.60 ± 3.1 4.95 ± 1.81 4.37 ± 1.5

del_last & build_fist 51.89 ± 2.01 51.66 ± 3.06 51.17 ± 2.48 3 - 1019* 11.8 ± 9.9 6.67 ± 4.23 5.95 ± 3.8

HypInv 20-6 88.28 ± 5.45 87.17 ± 5.99 83.37 ± 3.84 3.00 ± 2.1 24437 ± 161 1.57 ± 1.20 24437 ± 161

ocr fsdt_0

ANN-DT

absvar-var 59.94 ± 4.12 59.20 ± 4.65 54.32 ± 4.43 46.2 ± 30 42.0 ± 27 6.45 ± 2.56 6.38 ± 2.5

entropy 81.17 ± 2.02 78.02 ± 1.12 70.88 ± 2.61 105 ± 26 86.4 ± 19 8.31 ± 0.35 8.17 ± 0.41

fidgain 79.75 ± 3.01 75.74 ± 1.84 70.38 ± 5.77 118 ± 48 97.4 ± 37 7.63 ± 1.17 7.50 ± 1.1

var 70.65 ± 6.96 69.68 ± 6.56 66.52 ± 4.88 49.7 ± 25 45.9 ± 24 6.93 ± 2.29 6.91 ± 2.3

DeepRED
build_first 62.36 ± 7.09 62.03 ± 6.32 60.18 ± 3.95 108 - 50763576* 37.7 ± 11 25.55 ± 8.94 18.0 ± 5.4

del_last & build_fist 65.70 ± 5.08 65.65 ± 5.63 61.62 ± 4.91 82 - 3324312* 34.2 ± 16 17.80 ± 6.88 13.2 ± 4.1

HypInv 20-6 73.14 ± 3.11 72.91 ± 3.68 69.09 ± 7.35 19.8 ± 5.2 711 ± 213 4.87 ± 0.22 711 ± 213

Table 3: The change of DDAG fidelity in the last step
of the DeepRED method for all considered binarized
datasets.

Data Settings
Fidelity before

last step (%)

Fidelity after

last step (%)

audio_stem_all

fsdt_0

build_first 85.03 ± 0.01 54.18 ± 0.02

del_last & build_fist 85.80 ± 0.02 52.86 ± 0.03

audio_stem_all

fsen_1000

build_first 78.91 ± 0.07 52.05 ± 0.04

del_last & build_fist 82.42 ± 0.02 49.78 ± 0.02

audio_stem_all
build_first 97.49 ± 0.01 51.54 ± 0.02

del_last & build_fist 98.53 ± 0.01 51.89 ± 0.02

ocr fsdt_0
build_first 83.21 ± 0.18 62.36 ± 0.07

del_last & build_fist 94.76 ± 0.01 65.70 ± 0.05

We do not present an analysis of the extracted rules, be-
cause we want to keep our process as general as possible.
Also, comprehensibility of the rules is not proven by their
thorough discussion but just by possible measures of com-
prehensibility which support statistical analysis of their
properties. So the experimental process can be repeated
with almost all kinds of data also with the final compari-
son of the methods on those data.

Due to the reproducibility of the process, it can be the
basis of choosing the right rule extraction algorithm for
specific data in the future, or even, it can be a part of an
automated process that receives data or NN and returns
rules extracted by the most suitable algorithm.
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