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Abstract: Symbolic Regression is a supervised learning
technique for regression based on Genetic Programming.
A popular algorithm is the Multi-Gene Genetic Program-
ming which builds models as a linear combination of a
number of components which are all built together. How-
ever, in recent years a different approach emerged, repre-
sented by the Sequential Symbolic Regression algorithm,
which builds the model sequentially, one component at a
time, and the components are combined using a method
based on geometric semantic crossover. In this article
we show that the SSR algorithm effectively produces lin-
ear combination of components and we introduce another
sequential approach very similar to classical ensemble
method of boosting. All algorithms are compared with
MGGP as a baseline on a number of real-world datasets.
The results show that the sequential approaches are over-
all worse than MGGP both in terms of accuracy and model
size.

1 Introduction

Symbolic Regression (SR) is a supervised learning task
with the goal to find a mathematical function (preferably a
simple one) of a number of variables that fits the training
data available for training. Regression is a well known task
with a number of well known, well tested and successful
approaches, e.g. neural networks, support vector machines
and random forests to name a few. However, these con-
ventional approaches produce models which, while use-
ful, are often essentially black boxes which are difficult to
interpret. One of the goals of SR is to produce “white-
box” models in the form of a mathematical expression.
The overwhelming majority of SR approaches utilize some
form of Genetic Programming (GP) [1].

This article is structured as follows: Section 2 intro-
duces previous research relevant for this article and and
provide a new view on the main algorithm examined in
this article, in Section 3 we propose a simple boosting-
based sequential SR algorithm, Sections 4 and 5 present
the experiments and results respectively and provide a dis-
cussion of these results. Finally, Section 6 concludes the
article and proposes further research.
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2 Related Work

In this section we briefly revisit important approaches and
algorithms related to the sequential model building and to
the experiments performed later in this article.

First we introduce Multi-Gene Genetic Programming
which is not a sequential algorithm but is important for
this article. Then we briefly revisit boosting, a classical
machine learning ensemble method. Finally we introduce
the most important related research, the Sequential Sym-
bolic Regression algorithm.

2.1 Multi-Gene Genetic Programming

Multi-Gene GP (MGGP) [2, 3, 4] is an extension of clas-
sical GP for symbolic regression. The main idea behind
MGGP is that each individual is composed of one or more
independent trees, called genes, and these then form the
complete model together. To make the complete model,
the outputs of the genes are linearly combined with the
coefficients determined using linear regression. In this ar-
ticle, we call this linear combination of genes a “top-level
linear combination”.

MGGP does not build the model sequentially. However,
since we use the concept of top-level linear combination
to put SSR (see the next section) in a similar framework
and since we use the algorithm in the experiments, it is
necessary that it is mentioned.

2.2 Boosting

Building predictive models sequentially is a well known
machine learning technique. The prominent example
of this approach is the boosting ensemble method [5, 6, 7].
Boosting in the context of least-squares regression (i.e. re-
gression using the squared error as the criterion) works
in the following way (simplified):

1. Start with a constant model f0(x) = c, e.g. using the
mean target value: f0(x) = ȳ

2. Iterate for k = 1, 2, ..., M, where M is the desired
number of iterations:

(a) Compute the residuals ỹ = y− fk−1(x).
(b) Train a model component h(x) using ỹ as the

target values.



(c) Update the complete model fk(x) = fk−1(x)+
h(x).

3. fM(x) is the final model.

One possible view is that the latter model components cor-
rect the mistakes of the previous ones.

2.3 Sequential Symbolic Regression

SSR [8, 9] is a GP-based method that builds the model
in a sequential fashion. The overall structure of the SSR
method is following:

1. An SR algorithm (e.g. GP) is executed with the train-
ing set, producing a model component.

2. The model component is added to the complete
model and the training data is modified.

3. Unless stopping criteria are met, go to step 1 and re-
peat, using the modified training data.

This structure is somewhat similar to boosting – a model
component is trained, added to the complete model and the
next one is trained using a modified training data. How-
ever, SSR does not do boosting. The difference is in step 2,
i.e. how is the new component combined with the other
components of the complete model and how is the training
data modified.

For the first iteration, the target values are not modi-
fied and the new component simply becomes the complete
model as at the time it is the only component. In the sub-
sequent iterations, SSR utilizes the Geometric Semantic
Crossover (GSX) from Geometric Semantic Genetic Pro-
gramming (GSGP) [10] to add the new component to the
complete model. GSX performs a convex combination of
two functions:

f ∗(x) = r f (x)+(1− r) f ′(x) (1)

where r is a random number from the interval [0,1), and f
and f ′ are the two combined functions.

In SSR, the GSX is employed in a different way than
to combine two known functions. Only one of the two
functions is known (the component from the previous it-
eration, i.e. f ). SSR therefore performs an “incomplete”
GSX, meaning that f ′ is only a placeholder for a function
to be found in the next iteration using a modified training
data. The training data is derived by the following reason-
ing. The result of the GSX should optimally produce zero
error, i.e. f ∗(x) = y. Substituting this into Equation 1 and
slightly rearranging it, the following equation is obtained

f ′(x) =
y− r f (x)

1− r
. (2)

This is, in effect, a requirement on how the outputs of f ′

should look like, i.e. it is a definition of its target values for
the next iteration. Therefore the problem is transformed

and the next iteration with different training data is started.
It is important to note that the convex combinations are
“nested” in depth in the second term of the GSX expres-
sion. In the last iteration, the f ′ placeholder is not replaced
with another GSX result but with the function found in that
iteration, terminating the nesting. The complete SSR pro-
cedure has the following form:

1. y1 = y, k← 1

2. Run the base algorithm with yk as target values, pro-
ducing a component fk.

3. Sample a random number rk ∈ [0,1).

4. Update the complete model:

• if k = 1 and it is not the last iteration:
f ∗ = rk fk +(1− rk) f ′

• if k = 1 and it is the last iteration:
f ∗ = fk, terminate

• if k > 1 and it is not the last iteration:
f ′← rk fk +(1− rk) f ′

• if k > 1 and it is the last iteration:
f ′← fk, terminate

5. Adjust target values yk+1 =
yk−rk fk(x)

1−rk

6. k← k+ 1, repeat from step 2 unless a stopping con-
dition is met.

7. return f ∗

where f ′ is the placeholder. The nesting happens in the
third case in step 4, where the placeholder is replaced with
the GSX of the new function and the placeholder again.

2.4 SSR as Top-Level Linear Combination

In previous subsection we have briefly described the SSR
procedure and how it constructs the models via GSX. Now
we rewrite the procedure in such a way that the result
is a linear combination of expressions as in MGGP and
Boost-GP.

By iterating Equation 1 (with added subscripts to indi-
cate the iteration number) and expanding the multiplica-
tion at each step, we can see how the model looks like as
if it was finished at that iteration, i.e. in the second and
fourth case of step 4 of the SSR procedure from the previ-
ous subsection (for the sake of simplicity, let r̄k = 1− rk):

k = 1 : f ∗1 = f1
k = 2 : f ∗2 = r1 f1 + r̄1 f2
k = 3 : f ∗3 = r1 f1 + r̄1(r2 f2 + r̄2 f3)

= r1 f1 + r̄1r2 f2 + r̄1r̄2 f3
k = 4 : f ∗4 = r1 f1 + r̄1r2 f2 + r̄1r̄2(r3 f3 + r̄3 f4)

= r1 f1 + r̄1r2 f2 + r̄1r̄2r3 f3 + r̄1r̄2r̄3 f4
...

(3)



From the above iteration we can see that the model
in fact is a linear combination of several expressions. We
can also see a pattern of the multiplicative coefficients:
each time a component fk is added to the model, the co-
efficient of component fk−1 is multiplied by rk−1 and the
coefficient of the new component fk is the coefficient of
component fk−1 multiplied by r̄k−1. This allows for ef-
ficient implementation using a list of expressions and a
corresponding list of their coefficients, just multiplying a
number in the second list and adding an element to the end
of both lists. This view also allows further manipulation
of the coefficients and model components in a way similar
to MGGP, e.g. performing an additional linear regression.

3 Boosting-GP

In the previous section we briefly introduced Sequential
Symbolic Regression algorithm (SSR) which utilizes Ge-
ometric Semantic Crossover to sequentially combine the
components of the complete model and to derive modified
training data for subsequent iterations. We propose an al-
ternative approach that is almost identical to the boosting
scheme (see Section 2.2), hence we call it Boost-GP.

The procedure matches that of boosting we already de-
scribed, except for a few details. In Boost-GP, we do
not start with a constant model, instead we start with no
prior model at all and the first component is found using
GP too. The procedure that finds the individual compo-
nents is a GP-based algorithm. If the underlying algorithm
produces a linear combination of several expressions (as
MGGP does), those are treated as several components and
are added to the model at the same time, summing possible
constant offsets. Other than these details, the procedure is
exactly the same as that of boosting.

4 Experiments

We perform a series of experiments with the aim to com-
pare the performance of a number of algorithms both
in terms of model accuracy and complexity. First we de-
scribe the algorithms used in the experiments and their set-
tings, then we describe the datasets and finally we describe
the experimental protocol.

4.1 Algorithms

For the experimental evaluation we selected a number
of algorithms and their variants based on SSR, boosting
with GP, MGGP and linear regression as a baseline.

LR The first algorithm that serves purely as a baseline
is an ordinary least-squares linear regression on the prob-
lem’s features. Its purpose is to frame all the other algo-
rithms to a well established context.

MGGP This algorithm represents an algorithm that pro-
duces models composed of multiple components but
which are all evolved simultaneously.

1G The same as MGGP but the individuals are limited
to a single gene, making it effectively a Scaled Symbolic
Regression algorithm [11] (not to be confused with Se-
quential Symbolic Regression that is discussed in this arti-
cle, which has the same abbreviation SSR). In order to pro-
vide similar complexity, the tree depth limit is increased
to allow for at least the same number of nodes as MGGP.

SSR-GP, SSR-1G Sequential Symbolic Regression algo-
rithm (see Section 2.3) with ordinary GP and 1G (see
above) as the base algorithm respectively.

nSSR-GP, nSSR-1G Similar to SSR-GP and SSR-1G but
using the normalization and denormalization as described
in [9].

SSR with final fitting All the SSR-based algorithms men-
tioned above (coded identically but then suffixed with the
word “fit”, e.g. “SSR-GP fit”) are also used in such way
that after the algorithm completes, the coefficients of the
individual components are recalculated using linear re-
gression in the same manner as is used in MGGP.

Boost-GP, Boost-1G Boosting-type sequential approach
(see Section 3) with ordinary GP and 1G (see above) as the
base algorithm respectively.

4.2 Algorithm settings

The description of settings of the algorithms (except for
LR which has no settings) follows. MGGP, SSR and Boost
algorithms are set to produce a model of 10 components
with the maximum depth of 10. That means that MGGP
has the gene number limit set to 10 and SSR and Boost
algorithms are run for 10 iterations. The stopping crite-
rion for MGGP is a wall-clock time limit of 1800 s, for
SSR and Boost algorithms it is the number of 10 itera-
tions of which each has a wall-clock time limit of 180 s,
therefore all algorithms have an equal amount of time
available to find a good solution. The 1G algorithm pro-
duces only one component and in order to have roughly
the same amount of nodes available, the maximum depth
is set to 16. 1G is also run for 1800 s. Other settings which
are common for the algorithms are described in Table 1.

4.3 Datasets

We use four real-world datasets freely available from the
UCI repository [12]. The datasets are described in the
following paragraphs. Summary information about these
datasets is in Table 2.



parameter value

population size 800

# of elites 10 % of population

tournament size 4 % of population

prob. of mutation 0.2

prob. of crossover 0.7

constant/subtree mutation
ratio 0.3/0.7

σ of constant mutation 10

function set
a+b, a−b, a ·b,
a√

1+b2
, ea, |a|, sina, a2

Table 1: Common algorithm settings.

dataset # of dimensions # of samples
training testing

ASN 5 1052 451
CCS 8 721 309
ENC 8 537 231
ENH 8 537 231

Table 2: Summary information on the datasets used in
the experiments. The division into training and testing
samples comes from a random 70:30 split of the original
dataset.

ASN Airfoil self-noise (ASN) is a 5-dimensional dataset
describing acoustic pressure for various airfoils during
wind tunnel tests.

CCS Concrete compressive strength (CCS) is
an 8-dimensional dataset describing compressive strength
of concrete based on its ingredients.

ENC, ENH Energy efficiency of cooling/heating (ENC,
ENH) are 8-dimensional datasets describing energy effi-
ciency of cooling and heating buildings.

4.4 Experimental protocol

Each dataset is randomly split into training/testing subset
25 times. Each algorithm is run once for each split of each
dataset, i.e. 25 runs per algorithm per dataset in total. For
each of the 25 runs of an algorithm on a dataset a different
seed for the random number generator used by the algo-
rithm (except for LR which is fully deterministic).

During the algorithm run, only the training set is used.
After the run completes, the models produced by the al-
gorithms are evaluated on the testing set. Performance
is measured using the coefficient of determination, or R2

score.1 The model complexity is measured as the number
of nodes in the model. The coefficients of the linear com-
bination that combines the components of the model is not
counted towards this number. These two measures (per-
formance and complexity) are then aggregated over the 25
runs of each algorithm for each dataset.

All runs were performed on machines of identical con-
figuration that were part of the MetaCentrum grid (see Ac-
knowledgements).

5 Results

In this section we present the results of the experiments.
As described in Section 4.4, we focus on the performance
(R2) the complexity (number of nodes) of the models.
Test-set performance along with complexity is depicted
in Figure 1. The result is displayed in the form of two
crossing lines whose intersection is at the median R2 and
median number of nodes, and they stretch from 1st to 3rd
quartile in both the measures. SSR algorithms of the same
configuration except for final fitting are plotted in the same
color for easier visual assessment of the effect of final fit-
ting.

5.1 Discussion

From Figure 1 it is clear that MGGP produces the small-
est models for all four datasets. We hypothesize that this
is caused by the fact that all the components are evolved
together so they can complement each other while in the
other algorithms (except for 1G) each component is forced
to evolve on its own. When the component is being
evolved, it doesn’t “know” about the other components so
the evolution tries to solve the current problem with the
single component and it produces a big component as it
tries to do that. When it is time for the next component, the
previous one is fixed and it cannot get smaller anymore.

In terms of test-set performance, MGGP, Boost-GP and
Boost-1G are the best performers overall, with (n)SSR-1G
fit being close. On the other hand, SSR-GP and nSSR-GP
are, overall, the worst performers, performing even worse
than LR in some cases. Even though the Boost algorithms
are competitive in terms of performance, they are in line
with the SSR algorithms regarding the number of nodes,
which is much larger than that of MGGP or 1G.

The SSR algorithms, especially the variants without fi-
nal fitting, are performing rather poorly compared to the
other algorithms except for 1G and LR. It can be seen
that the final fitting improves the performance consider-
ably. We hypothesize that this is caused by the fact that
the original coefficients are chosen randomly and from a
bounded interval. Even though the target values are modi-
fied in such way that the result should be close to optimum
if the new component models the new target values well,

1R2 = 1− ∑
N
i=0(yi−ŷi)

2

∑
N
i=0(yi−ȳ)2
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Figure 1: Complexity-performance plot of the final models for all four datasets. The horizontal lines are vertically placed
at the median R2 value and stretch in the horizontal direction from 1st to 3rd quartile of the number of nodes. The vertical
lines are horizontally placed at the median number of nodes and stretch in the vertical direction from 1st to 3rd quartile of
R2. The intersections show the point of median number of nodes and median R2. The closer the lines are to the upper left
corner of the plot, the better (i.e. well performing and small) the models are. The dotted line shows the median R2 of LR
and the gray band stretches from 1st to 3rd quartile of R2 of LR.

the contribution of previous component can be multiplied
by a very small number which makes the new target values
not much “easier” than for previous components. Also,
looking at Equation 3, each component is multiplied by a
number of values, each smaller than or equal to 1 and the
later the component is added the more such multipliers it
has and therefore it contributes less and less to the final
model. However, SSR-1G (and its fitted version) perform
much better. The reason is that with 1G, the component
is scaled by a factor, mitigating the just described issue to
some extent.

Another notable pattern is that algorithms using 1G as
the base algorithm perform considerably better than those
using GP, which is to be expected since even the simple

linear scaling can considerably reduce the error, especially
if the inner structure of the component is good but it only
lacks such scaling.

The final interesting pattern is that the normalization in
SSR has almost no effect in terms of performance when
the base algorithm is 1G, and quite inconsistent effect
when the base algorithm is GP. The reason of the small
effect with 1G is again the fact that 1G introduces its
own multiplicative and additive constant so the normaliza-
tion and denormalization coefficients become redundant to
some extent.



5.2 Overfitting and underfitting

Figure 2 displays the results on training and testing set side
by side. With a few exceptions, it can be said that no algo-
rithm suffered from overfitting as the testing performance
values are about as much smaller than the training ones
as is exhibited by the linear regression. The most notable
exceptions are the Boost algorithms, especially on ASN
and CCS datasets. Boost-1G produced two significant out-
liers in both datasets and the other testing values are also
generally smaller than the training ones. It is best seen in
the CCS dataset where Boost-1G is the best performer by
training performance but the testing performance is signif-
icantly2 worse than the training performance.

With the exception of nSSR-GP fit on the CCS dataset,
all the SSR algorithms have, overall, the smallest differ-
ence in training and testing performance. In some cases
the testing performance is even better than the training per-
formance. This could indicate potential underfitting, either
of the whole algorithm or the individual components.

6 Conclusions and Future Work

In this article we reviewed the idea of sequential approach
to symbolic regression. We reviewed an existing approach,
called Sequential Symbolic Regression, which is unique
by using Geometric Semantic Crossover to combine the
individual model components and derive training data for
subsequent component evolution.

We have shown that the models SSR produces are ef-
fectively a linear combination of a number of compo-
nents, similar to MGGP, but constructed by a different ap-
proach. We have also proposed a simple boosting-inspired
approach which uses the residuals directly as the train-
ing target values for the next component and combines the
components just by adding them together.

We have performed a series of experiments with the al-
gorithms, using different base algorithms of GP and 1G,
and different variants of SSR, most importantly with final
fitting of the coefficients with linear regression. The re-
sults have shown that MGGP, a non-sequential algorithm,
is the best or one of the best algorithms on each dataset
and producing by far the smallest models. Of the sequen-
tial algorithms, the SSR is, overall, the worst, except for
the variants using final fitting and 1G as the base, which
are comparable to the boosting-inspired algorithms on two
of the four datasets.

Except for the boosting-inspired algorithms in some
cases, no algorithm experienced overfitting, which might
be a useful information for some users, and it also shows
that big and complex models don’t necessarily mean over-
fitting.

2Mann-Whitney U test with significance level α = 0.01.

6.1 Future Work

This article investigated the sequential algorithms in their
basic form only, using a predefined number of components
and a predefined scheme of the evolution of the individual
components. However, the sequential algorithms naturally
lend themselves to tuning and tweaking. One of possi-
ble approaches is not to switch components regularly but
based on some other scheme, e.g. the performance of the
current component. Another approach worth investigating
might be using full MGGP as the base algorithm in the se-
quential algorithms which would mean that multiple com-
ponents will be produced at each stage, not just one. This
would allow for a “continuum” of algorithms with MGGP
on one side as a totally non-sequential algorithm, and SSR
or boosting-inspired algorithms as described in this article
on the other side, as totally sequential algorithms.

Another area worth exploring is the interplay of the
complexity of individual components or limits on their
size, the number of components, and the amount of com-
putation resources available for a single component. The
classical boosting works with so-called weak learners,
i.e. models which by themselves are not capable of solv-
ing the problem to any reasonable degree, and uses many
of such models. A similar approach could be used for the
sequential approaches reviewed in this article, by setting
tighter limits on the complexity and/or computational re-
sources for the evolution of each component.
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