
Deep Networks in Online Malware Detection

Jiří Tumpach1, Marek Krčál2, Martin Holeňa3

1 Faculty of Mathematics and Physics, Charles University, Malostranské nám. 2, Prague, Czech Republic
2 Rossum Czech Republic, Dobratická 523, Prague

3 Institute of Computer Science, Czech Academy of Sciences, Pod vodárenskou věží 2, Prague, Czech Republic

Abstract: Deep learning is usually applied to static
datasets. If used for classification based on data streams, it
is not easy to take into account a non-stationarity. This pa-
per presents work in progress on a new method for online
deep classification learning in data streams with slow or
moderate drift, highly relevant for the application domain
of malware detection. The method uses a combination
of multilayer perceptron and variational autoencoder to
achieve constant memory consumption by encoding past
data to a generative model. This can make online learn-
ing of neural networks more accessible for independent
adaptive systems with limited memory. First results for
real-world malware stream data are presented.

1 Introduction

Deep network architectures have many benefits. The most
obvious one is the lack of need for comprehensive prepa-
ration of data. A large enough network probably finds rel-
evant features automatically. So it is easier to pass data to
training than to guess about the correct match in the triple
problem-transformation-classifier.

However, deep network needs a lot of training data to
perform in this way. Fortunately, many areas constantly
generate large amounts of data.

Too much data may be a problem because parallel train-
ing for deep neural networks can be expensive. Some
training examples may be unnecessary and contain only
repeating relevant information with some random noise.
In this case, they function as a weight for the relevant in-
formation.

Consider a situation where there is no expected change
of the target function during its use (offline training). In
this case, one can save similarity filtered latent features
of the trained network. For example, latent features can
be outputs of some middle layer. One application can be
transfer learning where some trade-off between network
performance and speed of training is already expected.

Online problems are specific because they are intended
for situations, when some drift of information is expected.
So training on all available data can be harmful. One easy
solution is to train a model only on the most recent subset
of training examples. This method reduces the need for
parallel training, however, discarding a large proportion

Copyright c©2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

of data can cause quick overtraining, especially in case of
slow drift.

This paper investigates faster retraining of neural net-
works on data with slow drift. Such a research is highly
relevant for the application domain of malware detec-
tion because most of the malware is evolving, entailing
a drift in data. The main idea is to have multiple pairs of
generator-discriminator for each time interval. The cur-
rent generator is trained with the last subset of training
data (moving window) with the addition of generated sam-
ples based on the previous generator. Its job is to esti-
mate the distribution of past data points and to use that
distribution for generating new examples. A discriminator
uses also labels generated by the previous discriminator if
labels are not provided explicitly. The generative model
stores some information about the importance of different
training cases (weights) and acts as an implicit decay. For
the generative model, we currently use variational autoen-
coders (VAEs) and intend to include also deep belief net-
works (DBN) soon. However, this idea can be generalized
to any suitable classifier and generative model.

In Section 2, we present the state of the art in online
malware detection. The used methods are described in
Section 3. In Section 4, strategies for training and evalua-
tion are proposed. In Section 5, our data and experiments
on a real word malware dataset are presented.

2 Online Malware Detection

Malware is continuously evolving by exploiting new vul-
nerabilities and examining evading techniques [8]. More-
over, detection has to deal with significant data drift. It can
make use of a signature database of previously detected
malware. When the file is scanned, at first its is compared
with the items in the database. So only modified and new
malware needs to be detected giving high priority to gen-
eralization. Therefore, online detection methods, capable
of keeping up with and adapt to such evolution, are desir-
able.

Malware detection techniques can be divided into static
and dynamic methods [12]. The static methods focus on
an analysis of program code while dynamic methods infer
from program behaviour. They can log used resources and
privileges, system or APIs calls or track sensitive data an
inside application [8]. In connection with online learning,
DroidOL [8] uses the analysis of inter-procedural control-
flow graphs to achieve robustness against hiding attempts.

f o j

·b j1

·w(4, j)i4

·w(3, j)i3

·w(2, j)i2

·w(1, j)i1

Figure 1: The neuron j, its inputs (ii) are multiplied by
corresponding weights (w(i, j)) then summed together with
a specific bias bi. The resulting value is called activation.
This value is mapped by the activation function f (x) to the
output o j of the neuron j.

It is trained with a fast online linear algorithm adapted
to growing dimensionality. On real Android applications,
DroidOL outperforms state-of-the-art malware detectors
with 84.29% accuracy.

Another dynamic online method [11] reports using on-
line learned Support Vector Machines with RBF kernel to
detect malware from application behavior.

Users can have different sensitivity to give their data
like location, contacts, or files to an author of a spe-
cific application. Antimalware programs then need to
profile each user to not restrict them or overly bother.
XDroid [12] tackles this problem by online hidden Markov
model (HMM) learning.

3 Methodological Background

3.1 Multilayer Perceptron (MLP)

A multilayer perceptron is composed of neurons (Figure 1)
arranged into layers (Figure 2) [3]. The first layer is called
input layer, and its function is to receive values of the in-
puts. The last layer is called output layer and it has a sim-
ilar structure as the remaining, aka hidden layers. Their
neurons are connected to the output of each neuron in the
previous layer. Figure 2 depicts a two layer MLP. It is a
non-linear regression or discrimination model because its
neurons use non-linear activation functions (Figure 3).

MLP is learned through minimizing some loss function
usually by some kind of smooth optimization. The most
simple, but still used kind of smooth optimization is gra-
dient descent, in the area of neural networks also known
as backpropagation, due to the flow of gradient computa-
tion. In high-dimensional spaces, its stochastic variant is
commonly used, stochastic gradient descent. Exact sec-
ond order methods like such as the Gauss-Newton method

Input layer

Hidden layer

Output layer

Figure 2: Multilayer perceptron with two layers.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2
−1

−0.5

0

0.5

1

sigm(x) = 1
1+e−x

(a) sigmoid

relu(x) = max(0,x)

(b) relu

Figure 3: Important examples of activation functions.

are usually inefficient [2, 17]. On the other hand, more
successful methods are attempting to approximate second
order behavior. One of the strategies is to have differ-
ent learning rates (sizes of steps) for each learned vari-
able (Adam, AdaGrad, RMSProp, SGD with Nestorov
momentum, ...) [3]. Alternatively, some methods ap-
proximate second order derivatives from gradients history
(Adam) [5].

One of the most popular loss functions used in regres-
sion problems is the Mean Square Error (MSE) loss [3]
LMSE = 1

N ∑
N
i=1(yi− ŷi)

2 where ŷi is output of MLP given
sample xi from feature space with corresponding correct
value yi, N is the number of samples in one training cycle.
In classification, to be able to learn probabilities of labels,
one can employ cross-entropy loss. For classification into
G classes, it is defined as − 1

N ∑
N
i=1 ∑

G
l=1 yil log(ŷil) and the

predicted probability ŷil of the label l is given by the soft-
max activation function ŷil = exp(ŷil)/∑

G
s=1 exp ŷis.

3.2 Autoencoders (AEs)

Autoencoders are neural networks capable of learning data
representations called codings, usually with a much lower
dimension than is the dimension of the input data [3]. They
learn to copy the input to its output and are consisted of
two parts: an encoder and a decoder, cf. the example in
Figure 4. By restricting the flow of information, one can
achieve interesting properties, for example denoising, de-
tecting anomalies, generating unseen samples with a simi-
lar distribution as the training one and so on.

encoder decoder

Figure 4: Autoencoder – the output of the encoder is the
input to the decoder.

3.3 Variational Autoencoders (VAEs)

Codings in basic autoencoders can have nonstandard dis-
tributions [3]. This property makes it difficult to generate
samples similar to the training dataset. VAEs solve this
problem by employing the Kullback-Leibler (KL) diver-
gence. KL divergence between two distributions p and q
is defined as:

DKL(p||q) = H(p,q)−H(p)

=−
∫

∞

−∞

p(x) lnq(x)dx+
∫

∞

−∞

p(x) ln p(x)dx

=
∫

∞

−∞

p(x) ln
(

p(x)
q(x)

)
dx,

where H(p,q) is cross-entropy and H(p) is entropy. The
KL divergence is a measure of difference between two dis-
tributions. If p(x) and q(x) are the same, the divergence
equals 0, otherwise it is positive value.

Because codings in AEs are deterministic, it is not pos-
sible to define KL divergence. The important idea in [6]
is to map the codings to normal distributions, using a suit-
able neural network. The i-th coding now corresponds to
one pair of output neurons of the network, and their activi-
ties represent a normal distribution for the i-th codding. So
the first neuron defines the mean (µi) and the second one
the standard deviation (σi) of that normal distribution. The
normal distributions for different codings are mutually in-
dependent.

VAEs learn to minimize LVAE where LVAE =
DKL (N (µ,σ)||N (0,1))+LMSE. So they are learned to
copy their inputs to the outputs, while maintaining approx-
imately a normal distributions in the codings. In [6] has
been proven that this divergence can be computed as

LVAE = LMSE−
1

2N

N

∑
i=1

G

∑
l=1

(
1+ log(σ2

il)−µ
2
il−σ

2
il
)

Gausian noise generator

+

+

+

σ1 ×

µ1

σ2 ×

µ2

σ3 ×

µ3

Figure 5: Variational Autoencoder. Gray nodes are opera-
tions, µ,σ nodes have linear activation fucntion.

.
In [3] has been proposed to speed up convergence in

training by predicting logarithm of variance (log(σ2
i) = vi)

instead of standard deviation. Then LVAE will be:

LVAE = LMSE−
1

2N

N

∑
i=1

G

∑
l=1

(
1+ vil−µ

2
il− evil

)
The VAE encoder input is now ~µ +~ε ·~v, where ~ε is a

vector of samples from standard normal random distribu-
tion. VAEs backpropagation is unchanged, all operations
should be considered without any skipping.

If VAE is properly learned, sampling becomes easy. We
can expect a normal distribution of its codings if we sam-
ple from a real learned distribution. The encoding part is
then redundant and can be skipped. The result is only a
random sampler which gives inputs to the decoder.

3.4 Support Vector Machine (SVM)

A support vector machine will be tested as an alternative
to a multilayer perceptron for the starting classification of
available data, due to a frequent use of SVMs in malware
detection [7, 9, 10, 16].

A SVM is constructed with the objective of best gen-
eralization, i.e., maximal probability that the classifier φ

classifies correctly with respect to the random variables X
and Y producing the inputs and outputs, respectively,

maxP(φ(X) = Y). (1)

For our high-dimensional feature space X ⊂Rn, it is suf-
ficient to consider only a linear SVM, which classifies ac-
cording to some hyperplane Hw = {x ∈ Rn|x>w+ b = 0}

with w ∈ Rn,b ∈ R,

(∀x ∈X) φ(x) = φw(x) =

{
1 if x>w+b < 0,

-1 if x>w+b≥ 0.
(2)

It can be shown [1, 14] that on quite weak conditions,
searching for maximal generalization (1) is equivalent to
searching for maximal margin between the representatives
of both classes in the training data,

max
ρ

‖w‖
with constraints ckx>k w≥ ρ

2
,k = 1, . . . , p,

where ρ is the scaled margin and
(xk,ck) ∈ Rn×{−1,1} are the training samples, (3)

and that using the standard Lagrangian approach for in-
equality constraints, (3) can be transformed into the dual
task

max
(α,ρ)
−1

4

p

∑
j,k=1

α jαkc jckx>j xk +
ρ

2

p

∑
k=1

αk

with constraints KKT, α1, . . . ,αp ≥ 0,ρ > 0,
where α1, . . . ,αp are Lagrange multipliers. (4)

The objective function in (4) is quadratic, thus it has a sin-
gle global maximum, which can be found in a straightfor-
ward way. The abbreviation KKT in (4) stands for Karush-
Kuhn-Tucker conditions

αk(
ρ

2
− ckx>k w) = 0,k = 1, . . . , p. (5)

Due to KKT, the classifier (2) in terms of the solution
α∗1 , . . . ,α

∗
p,ρ
∗ of (4) turns to

(∀x ∈X) φw(x) =

{
1 if ∑xk∈S α∗k ckx>xk +ρ∗ ≥ 0,

-1 if ∑xk∈S α∗k ckx>xk +ρ∗ < 0,
(6)

where S = {xk|α∗k > 0}. The vectors in S lie in the sup-
port hyperplanes of the representatives of both classes in
the training data. Therefore, they are called support vec-
tors.

Because the size of input features is 540, and at least
40% of them are binary or look almost as constants, we
decided to use a linear SVM. Moreover when polynomial
kernel (p = 2) was used, the speed of convergence was too
slow.

3.5 Linear Regression

To estimate the trend of a time series of model accuracies,
we need to perform a linear regression [13] for C points in
two dimensions (x0,y0),(x1,y1), . . . ,(xC,yC). More pre-
cisely, the trend of the time series is described by the slope
a of the line ŷi = axi +b where

a =
xy− xy

x2 + x2
b = y−ax

with t = 1
C ∑

C
i=1 ti.

4 Proposed Strategy for Online Learning
with VAEs

We propose an online learning strategy which focuses on
more effective learning and a constant memory require-
ments of fetures. The strategy uses two deep learning
architectures: MLP and VAE. While a MLP is trained
to replicate labels, a VAE is used as a feature generator.
Hence, a VAE can generate new unseen samples for a MLP
representing the history. The pseudocode of the algorithm
can be found in Algorithm 1 and a diagram of training data
paths is depicted in Figure 6.

In the first week of training, the VAE is trained on cur-
rent moving window, which act as a memory limit. The
same applies for the MLP, but it also uses label informa-
tion. Next weeks are different. The VAEs use also data
sampled from previous weeks VAE, this provides some-
thing like a moving average. The problem is in choos-
ing the right 1. time to update, 2. size of the generated
data, 3. relative importance of generated data. All MLPs
are also trained from VAEs generated data; because gener-
ated data lacks label information, the previous weeks MLP
must be employed to add them.

week 1 week 2 week 3

VAE

MLP

VAE

MLP

VAE

MLP

Figure 6: Training data paths for VAEs and MLPs for each
week. Red indicates generated data, blue adds label clas-
sifications to features.

5 Experiments with Malware Detection
Data

In this section, we describe several experiments with real-
world data from the area of malware detection.

5.1 Data

We use real-word anonimized data, which feature malware
and clean software in several categories, but we consider
only two by merging some of them. The semantics of
the individual features has not been made available by the
company. The feature space is very complex, there are
540 features with various distributions. This makes partic-
ularly difficult to choose the correct data scaling. In Figure
7, several groups of features are differentiated:

Algorithm 1 Proposed online learning algorithm

Require:
number N . N is the number of inputs generated by

the previous generator.
number M . M is the size of the considered most re-

cent training data.
function data_for_iteration(number)

. It gives access to stored data for some
iteration with provided number.

function labels_for_iteration(number)
. Same as previous function, but for la-

bels.
Ensure:

Provides discriminator updates for each client
. Discriminator can predict labels for new

data.

1: procedure CLIENT
2: discriminator←function(x){return default class}
3: while workstation runs do
4: if exists new version of discriminator then
5: discriminator← update_discriminator()
6: end if
7: if new undecided file exists then
8: input←get_features(x)
9: label← discriminator(input)

10: send_to_server(x)
11: do task specific operation with file as label.
12: end if
13: end while
14: end procedure

15: procedure SERVER
16: iteration← 0
17: while not last iteration do
18: iteration←iteration+1
19: data←most_recent_data(M)
20: labels←most_recent_labels(M)
21: if iteration > 1 then
22: gen_data← generator(N)
23: gen_labels← discriminator(gen_data)
24: data← [data; gen_data]
25: labels← [labels; gen_labels]
26: end if
27: generator← learn_generator(data)
28: discriminator ← learn_discriminator(data, la-

bels)
29: publish_discriminator(discriminator)
30: while updating the discriminator is not needed

do
31: wait()
32: end while
33: end while
34: end procedure

Highly skewed

20%

Almost constant

19%

Binary 21%

Gaussian

10%

Other

30%

Figure 7: Distribution in the feature space.

• Binary feature

• Normally distributed feature: both absolute skewness
and kurtosis is less than 2

• Highly skewed feature: skewness > 30

• Almost constant feature: more than 99.9 % values are
identical

• Other unknown distributions

The data are initially divided by week. We decided to
keep this natural division even though some of the weeks
are mostly empty. We have used 375 weeks in our experi-
ments, the number of files and proportion of malware files
are for them depicted in Figure 8.

[p]

5.2 Performed Experiments and Their Results

To be able to decide if a neural network is a good model for
this task, we compare it with a linear SVM. The number of
recent training examples is chosen M = 150.000; it corre-
sponds to about 5.5 average weeksand at least 309 MiB of
RAM. In order to evaluate the full dataset, one must pro-
cess 113 GiB of data, and train, sample and evaluate about
370 SVMs and VAEs.

Both the MLP and the SVM models are Bayesian op-
timized on first week following the first M of excluded
data points by the GpyOpt library [15] using the maxi-
mum probability of improvement as acquisition function
and mixed sequential and local penalization evaluation.
The MLP model is using the Adam algorithm with early
stopping after 10 unimproved evaluation of the validation
data (25 % of the actual training data). The MLP uses
only densely connected layers with cross entropy loss, the
SVM uses squared hinge loss. The resulting hyperparam-
eters are in Tables 1 and 2. Table 1 shows a noticeably
larger network size together with a lot of regularization.

We have applied the Bayesian optimization also to the
VAE, but the results were not conclusive. Layers prefer
to be as large as possible because the LMSE part of the loss
can be reduced more with larger layers. Unfortunately, this
does not reveal whether some increase in history size (M)

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350 400
0%

20%

40%

60%

80%

100%

N
um

be
ro

ffi
le

s
in

w
ee

k

Week number

Proportion of malware files
Number of files

Figure 8: Number of analyzed files and the proportion of malware files in each week

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

M
ed

ia
n

of
ac

cu
ra

cy

Week number

Significant result
MLP1 median accuracy
MLP1 linear regression
SVM median accuracy
SVM linear regression

Figure 9: Comparison between two models trained on the data from the first week. The trend in the time series indicates
that a data drift is present.

0.7

0.75

0.8

0.85

0.9

0.95

0 50 100 150 200 250 300

M
ed

ia
n

of
ac

cu
ra

cy

Week number

Significant
SVM

MLP1
MLP2

Figure 10: Comparison between SVMs and MLPs retrained for each week. There is no clear gradual increase in the
difficulty of problem. MLP2 seems to be the best of the compared models. A result is highlighted if it is significantly
better than another worse result in the respective week.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 10 20 30 40 50

M
ed

ia
n

of
ac

cu
ra

cy

Week number

MLP2
MLP1
SVM

VAE-MLP1

Figure 11: Results of our algorithm in first 55 weeks. The significantly worst MLP1 gains significant performance
advantage when combined with a VAE, to the point of basically matching MLP2 and SVM. A summary of comparison
results is given in Table 4.

Table 1: Results of MLP hyperparameter optimization.

Name Selected value Possibilities
Learning rate 0.00763 0.0001-0.01
Batch norm. yes yes/no

Dropout 0.22 0-0.7
Gaussian

noise 0.795 0-1.0

Layers 354-322-316-
305-2

up to 400-400-
400-400-2

Activation relu.

elu, selu, softplus,
softsign, relu, tanh,

sigmoid,
LeakyReLU,
PReLU, ELU

Minibatch
size 730 10-1000

L1 regular. 0.01 0-0.1
L2 regular. 0.0998 0-0.1

Data scaling Standard Standard Robust
MinMax

helps more than the appropriate extension of a network.
Layers also tend to have elu as the most suitable activation
function together with batch normalization.

Altogether for baselines, we were using MLP1, repre-
senting a small slightly regularized MLP, MLP2 with op-
timal hyperparameters (Table 1), representing a large and
highly regularized network, and a SVM.

In Figure 9, we see a data drift is indeed present and
both models are similarly penalized in time. This observa-
tion is confirmed by Figure 10 where learning is done for

Table 2: Results of SVM hyperparameter optimization.

Name Selected value Possibilities
Penalty 64.44 0.001-80

Penalty type l1 l1/l2

Data scaling Standard Standard Robust
MinMax

each week and it does not seem that the difficulty of the
problem is increasing. The models are not clearly over-
trained because both achieved a rather high accuracy with
a rather small training dataset. The results were statisti-
cally analyzed by the Wilcoxon ranksum test with Holm
correction on the 5% family-wise significance level [4].
For models trained only once, the results showed that the
SVM was better 88.3% of weeks while being significantly
better 45.9% of them. MLP1 was significantly better only
in 0.8% of weeks. It is important to say that the MLP1 in
this test does not have optimal hyperparameters we, only
want to see if its behaviour is evolving with time. The
results of this comparison can be seen in Figure 9.

Subsequently, MLP1, MLP2 and SVM were trained re-
peatedly each week with a corresponding history of size M
and then tested on the next week. The results are depicted
in Figure 10, whereas a summary is in Table 3.

Our VAE-MLP algorithm is rather slow, due to inherent
sequential training. For the VAE, we used the 540-200-
200-10-200-200-540 fully connected architecture with elu
activations and LMSE. The network is updated with data
from each week with M = N = 150.000. Figure 11 de-
picts an interesting property. The previously clearly infe-
rior MLP1 is improved by VAE to the point of matching

Table 3: Summary of baseline consideration, the MLP1 is
a small network with little regularization, MLP2 is a large
network with a lot of regularization and linear SVM is con-
sidered because it may have superior generalization prop-
erties.

MLP1 MLP2 SVM
MLP1

is
better than

6.1% 2.9%
MLP2 93.9% 61.6%
SVM 97.1% 38.4%

MLP1 MLP2 SVM
MLP1 is

significantly
better than

0.0% 0.0%
MLP2 18.1% 6.1%
SVM 12.8% 0.0%

Table 4: Summary of the results of the first 50 weeks be-
tween baselines (MLP2 and SVM) and MLP1 with and
without VAE.

MLP2 MLP1 SVM VAE1
MLP2 is

better than

100.0% 100.0% 82.0%
MLP1 0.0% 0.0% 0.0%
SVM 0.0% 100.0% 8.0%
VAE1 18.0% 100.0% 92.0%

MLP2 MLP1 SVM VAE1
MLP2 is

significantly
better than

100.0% 84.0% 4.0%
MLP1 0.0% 0.0% 0.0%
SVM 0.0% 100.0% 0.0%
VAE1 0.0% 100.0% 14.0%

baselines performance. It clearly shows the potential of
this algorithm, not only we do not optimize MLP and VAE
together, but also we do not tune the vaues M and N. Ta-
ble 4 further confirms the findings from Figure 11 as a nice
summary.

If you are interested, you can try our model or help with
development at the following links:

Bayesian hyperparameter optimization framework
https://github.com/tumpji/Bayesian-optimizer.git

Implementation of the proposed method
https://github.com/tumpji/VAE-NN-Tensorflow.git

Deep belief networks in Tensorflow
https://github.com/tumpji/DBN-Tensorflow.git

6 Conclusion

This paper presented work in progress on a new approach
to online deep classification learning in data streams with
slow or moderate drift. Such kind of learning is highly rel-
evant for the application domain of malware detection. In
the paper, the employed methods have been recalled and
the principles of the proposed approach has been outlined.
In ongoing experiments, the approach is currently being

validated on a large set of real-world malware-detection
data. This dataset contains Windows executable files from
375 weeks, in the amount up to 30.000 binary files from
each week. Due to the large size of the dataset, only the
baseline detection using a MLP alone has been tested up
to now, and also compared to classification based on linear
SVMs, frequently used in malware detection. The com-
putational demands of testing the proposed new approach
allowed to accomplish it so far for only 55 weeks. Results
of the ongoing experiment will be available and presented
at the workshop.

Acknowledgement

The research reported in this paper has been supported by
the Czech Science Foundation (GAČR) grant 18-18080S.
Access to computing and storage facilities owned by par-
ties and projects contributing to the National Grid In-
frastructure MetaCentrum provided under the programme
"Projects of Large Research, Development, and Innova-
tions Infrastructures" (CESNET LM2015042), is greatly
appreciated.

References

[1] P.J. Bartlett and J. Shawe-Taylor. Generalization perfor-
mance of support vector machines and other pattern classi-
fiers. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, edi-
tors, Advances in Kernel Methods – Support Vector Learn-
ing, pages 43–54. MIT Press, Cambridge, 1999.

[2] W. L. Buntine and A. S. Weigend. Computing second
derivatives in feed-forward networks: a review. IEEE
Transactions on Neural Networks, 5(3):480–488, May
1994.

[3] Aurélien Géron. Hands-on machine learning with Scikit-
Learn and TensorFlow: concepts, tools, and techniques to
build intelligent systems. O’Reilly Media, Boston, first edi-
tion edition, 2017.

[4] S. Holm. A simple sequentially rejective multiple test pro-
cedure. Scandinavian Journal of Statistics, 6:65–70, 1979.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980 [cs], December
2014. arXiv: 1412.6980.

[6] Diederik P. Kingma and Max Welling. Auto-Encoding
Variational Bayes. arXiv:1312.6114 [cs, stat], December
2013. arXiv: 1312.6114.

[7] M. Mursleen, A.S. Bist, and J. Kishore. A support vector
machine water wave optimization algorithm based predic-
tion model for metamorphic malware detection. Interna-
tional Journal of Recent Technology and Engineering, 7:1–
8, 2019.

[8] A. Narayanan, L. Yang, L. Chen, and L. Jinliang. Adap-
tive and scalable Android malware detection through online
learning. In 2016 International Joint Conference on Neural
Networks (IJCNN), pages 2484–2491, July 2016.

[9] N. Nissim, R. Moskowitch, L. Rokach, and I. Elovici.
Novel active learning methods for enhanced PC malware

https://github.com/tumpji/Bayesian-optimizer.git
https://github.com/tumpji/VAE-NN-Tensorflow.git
https://github.com/tumpji/DBN-Tensorflow.git

detection in windows OS. Expert Systems with Applica-
tions, 41:5843–5857, 2014.

[10] H.H. Pajouh, A. Dehghantanha, R. Khayami, and K.K.R.
Choo. Intelligent OS X malware threat detection with code
inspection. Journal of Computer Virology and Hacking
Techniques, 14:212–223, 2018.

[11] B. Rashidi, C. Fung, and E. Bertino. Android malicious
application detection using support vector machine and ac-
tive learning. In 2017 13th International Conference on
Network and Service Management (CNSM), pages 1–9,
November 2017.

[12] Bahman Rashidi, Carol Fung, and Elisa Bertino. Android
Resource Usage Risk Assessment using Hidden Markov
Model and Online Learning. Computers & Security, 65,
November 2016.

[13] Mathieu ROUAUD. Probability, Statistics and Estima-
tion: Propagation of Uncertainties in Experimental Mea-
surement. Mathieu ROUAUD, June 2017.

[14] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT
Press, Cambridge, 2002.

[15] Machine Learning Group-University of Sheffield. GPyOpt.
[16] M. Stamp. Introduction to Machine Learning with Appli-

cations in Information Security. CRC Press, Boca Raton,
2018.

[17] William T. Vetterling, Brian P. Flannery, William H. Press,
and Saul A. Teukolsky. Numerical Recipes: The art of
scientific computing. Cambridge University Press, Cam-
bridge, 3nd ed edition, 2007.

	Introduction
	Online Malware Detection
	Methodological Background
	Multilayer Perceptron (MLP)
	Autoencoders (AEs)
	Variational Autoencoders (VAEs)
	 Support Vector Machine (SVM)
	Linear Regression

	Proposed Strategy for Online Learning with VAEs
	Experiments with Malware Detection Data
	Data
	Performed Experiments and Their Results

	Conclusion

