CEUR-WS.org/Vol-2473/paper9.pdf

Neural pairwise classification models created by ignoring irrelevant
alternatives

Ondrej Such'2, Martin KontSek?, and Andrea Tinajova!

' Mathematical Institue, Slovak Academy of Sciences
955 01 Banskd Bystrica, Slovakia
ondrejs@savbb. sk,

2 Zilinska Univerzita v Ziline, Univerzitna 8215/1,
01026 Zilina

Abstract: 1t is possible to construct multiclass classifi-
cation models from binary classifiers trained in pairwise
(one-on-one) manner. Important examples of models cre-
ated in this way are support vector machines applied to
multiclass problems. In this work we examine feasibility
of this approach for convolutional neural networks. We
examine multiple ways to train pairwise classification net-
works for MNIST dataset, and multiple ways to combine
them into a multiclass classifier for MNIST classification
problem. Our experimental results show definite promise
of this approach, especially in reducing complexity of
deep neural networks. An important unresolved question
of our approach is how to choose the best pairwise network
to include into a full multi-class model.

Keywords: MNIST, convolutional network, pairwise cou-
pling, one-on-one classification, binary classification,
dropout

1 Introduction

Deep neural networks are currently the most powerful type
of classifiers applicable for a multitude of machine learn-
ing problems [[1]]. Perhaps their biggest drawback is their
complexity, which manifests in multiple ways. First, they
require preparation and use of large datasets to attain the
best precision [2]]. They need a lot of specialized com-
puting power for training [3]] and the training process may
take a long time. Finally, the classification process is ob-
scured by their complexity, which makes it harder to un-
derstand their weaknesses and guarantee performance on
unseen instances. In this article we consider the question,
whether the classification process using deep neural net-
works could be made more modular, alleviating the draw-
backs resulting from the complexity.

The approach is inspired by research on support vec-
tor machines. Support vector machines were proposed by
Vapnik as a general purpose classifier [4]. They are still
popular to this date for a variety of classification tasks.
Since SVM work by dividing feature space (or its embed-
ding into a higher-dimensional space [3]]) into two parts
by a hyperplane, they are naturally suited for two-class

Copyright (©)2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

problems. Multi-class classification with SVM is accom-
plished by training SVM for pairs of classes, then fitting
sigmoid to obtain pairwise probabilities [6] and finally us-
ing a pairwise coupling method to obtain multiclass pre-
diction probabilities [[7].

The same approach can be applied to deep neural net-
works. An additional simplification compared to SVM is
that the step of fitting sigmoid is not necessary, since neu-
ral networks typically use soft-max for their final layers
that directly output prediction probabilities. On the other
hand, compared to SVM, the process of training of neural
networks allows for many more hyperparameters.

In this paper we will carry out the process on MNIST
digit classification task [8] illustrating the potential and
possible pitfalls of the approach (Figure[I). Even for the
basic MNIST task we had to severely limit the number
of investigated training procedures. A key restriction we
adopted is that we trained the two-class networks only
with examples belonging to the corresponding two classes.
Such approach, dubbed ‘ignoring irrelevant alternatives’,
promises to speed up the training process for the two-class
networks by reducing the size of the training dataset as
well as to cut the time needed to train the whole multi-class
model. Moreover, it is philosophically consistent with the
assumption of the independence of irrelevant alternatives
in the softmax layer commonly used in neural networks.

Our restriction, and pairwise decomposition of multi-
class classification itself are not without potential prob-
lems. A key issue is that of extrapolating prediction prob-
abilities to classes that a two-class classifier has never seen
during training (e.g. the insight of G. Hinton described in
the work of Hastie and Tibshirani [9]). Another potential
problem to guard against is that the proposed classifica-
tion scheme may require much more parameters since as
much as 10 x 9 /2 = 45 neural networks need to be trained
instead of one.

2 Methodology outline

MNIST dataset of handwritten digits (zero to nine) is a
widely used benchmark task in which convolutional net-
works proved quite successful [8]. It consists of 60000
training samples and 10000 testing samples. Throughout
this work we will use 8-layer feed-forward networks de-

multiclass prediction

A

[coupling method]

f

T pairwise likelihoods T

model model model
for for for
Ovs1 Ovs?2 8vs9

X) §
A
handwritten digit

Figure 1: The schema of a classification system built using
pairwise classifiers.

Layer Layer Output Number
name type shape of param-

eters
conv2d_1 convolutional (?, 26,26, 32) 320
conv2d_2 convolutional (?, 24,24,64) 18496
maxpool2d_1 max_pooling (?, 12, 12, 64) 0
dropout_1 dropout (7,12, 12, 64) 0
flatten_1 flatten (?7,9216) 0
dense_1 dense (7, 128) 1179776
dropout_2 dropout (?,128) 0
dense_2 dense (7, 10) 1290

Table 1: Structure of Keras network for MNIST classifica-
tion

rived from the network structure of the sample network
defined for solving MNIST classification in Keras frame-
work [10]. The network has eight layers totaling 1,199,882
parameters. The underlying tensor shapes and number of
parameters are given in the Table[T] The optimization cri-
terion is crossentropy loss and the model is trained with
Adadelta optimizer.

The networks we used differed from this one by
changing the dropout probabilities in layers dropout_1
and dropout_2 and the number of kernels in conv2d_1,
conv2d_2 and the number of neurons dense_l layer.
Moreover, since we use smaller training datasets, we com-
pensated by increasing the number of training epochs to
24 from 12.

The network achieves about 99.13% average success
rate classifying all digits (Fig. [2] left). The trained in-
stance of the network can be viewed also as a two-class
classifier for any pair of digits. The right part of Figure

- o
] - @
[. =) '
=2} h 2 '
o 7 [=]
© E 1 E
i : s :
‘ i
S | ; 2 -
]
° T °
— N
[e} o
8 3
o 0o © [¢)
o

Figure 2: Boxplots summarizing the performance of the
Keras network on MNIST task (left), and as a pairwise
classifier or digits 2 vs. 7 (right).

summarizes measured test accuracy as a 2-7 classifier.

For the coupling method we used the method of Wu-
Lin-Weng [L1]], which is commonly applied in SVM li-
braries [7]. The method is nontrainable i.e. there are no
adjustable parameters.

3 Models using large CNN

By a large CNN studied in this section we mean a con-
volutional network that differs from the Keras sample net-
work only in the values of the dropout parameters in layers
dropout_1 and dropout_2. Moreover, all large CNN net-
works were trained only on pairs of digits, and the number
of training epochs was increased to 24.

3.1 Dependence on dropout parameters

Dropout layers serve to suppress overfitting [12]. The
number of parameters of Keras neural networks greatly
outnumbers the number of training samples, and without
dropout it would be difficult to achieve high accuracy re-
liably. The optimal value of dropout probabilities may be
different from the original Keras network, since a) the task
has changed, and so did the training set, b) we increased
the number of epochs. Therefore we systematically sam-
pled dropout parameter space and measured mean perfor-
mance of the network. The results are shown in Figure
[l Overall the performance did not vary too much. More-
over the Figure implies that larger values of dropout are
appropriate for the first dropout layer and smaller values
of dropout are appropriate for the the second dropout layer.
Notable however is that training only on relevant examples
i.e. samples of twos and sevens resulted in lower perfor-
mance than obtained using original Keras network (Fig. [2]
right) for any choice of dropout parameters.

-0.9940
60 -
-0.9938
NI
§ 40 - | | r0.9936
)
©
-0.9934
20 -
-0.9932
: : : L+ 0.9930
20 40 60
dropout_1

Figure 3: Measured performance of large CNN network
on classifying 2’s vs. 7’s when the dropout probability of
the two dropout layers was varied.

dropout dropout error-rate of the
probability in probability in model on
dropout_1 layer | dropout_2 layer MNIST
classification

0.25 0.50 0.95%

0.65 0.05 0.95 %

0.65 0.15 0.96 %

0.70 0.15 0.96 %

Table 2: Error rates of the complete pairwise models built
using large CNN networks

3.2 Performance of complete pairwise models

Coupling models using to build complete pairwise models
have built-in redudancy. This redundancy has been shown
to ameliorate subpar performance of individual pairwise
classifiers in simulations with synthetic data [[L1]. It is
therefore worthwhile to evaluate the performance of com-
plete pairwise models. We did so for several choices of
dropout parameters: one for the values provided in the
original Keras network and the rest for dropout values
proved moderately better in classifying 2’s vs. 7’s (Figure
B). Only one experiment for each value was conducted,
since the number of parameters of the complete model is
impractcally large and the results are only for establishing
a comparison benchmark. The results are shown in Table
2] We can surmise that the performance dropped slightly
(by 0.1%) compared to the Keras network, despite the fact
that at the same time the number of parameters increased
45-fold.

80 L[]
r0.992
60 - L r0.990
N -0.988
5
o
S 40+ -
S r0.986
r0.984
201 r
+0.982
20 40 60 80
dropout_1

Figure 4: Measured performance of small CNN network
on classifying 2’s vs. 7’s when the dropout probability of
the two dropout layers was varied.

4 Models built using small CNN

By a small CNN studied in this section we mean a neural
network that differs from the Keras network by having us-
ing 4 kernels at conv2d_1 layer (rather than 32), 4 kernels
at conv2d_2 layers (rather than 64), 16 neurons at dense_1
layer (rather than 128), and possibly having a different
dropout probabilities for layers dropout_1 and dropout_2.
This ad hoc choice was made so that the network uses only
9,454 parameters, so a complete model built from such
networks would use 425,430 parameters, which is about
35% of the size of the original Keras network. Again, all
small CNN networks considered within this section were
trained only on samples for pairs of digits and the number
of epochs was increased to 24.

4.1 Dependence on dropout parameters

Since the small CNN networks have so few parameters
one may hypothesize that dropout is not needed to pre-
vent overfitting. In order to verify this hypothesis we again
systematically explored varying dropout values as shown
in Figure[d] The results are consistent with the hypothesis.

4.2 Average performance of pairwise models

In view of the dropout experiments further small networks
in this section were trained without dropout. We created
two series of series of sets of networks: (A) trained on
all available training samples for corresponding digits, and
(B) setting aside 10% of the training samples as a valida-
tion dataset, to be used for model selection in Section 4.3

Each series consisted of 20 sets, and each set contained 45
pairwise networks corresponding to every pair of distinct
digits. The mean error rates are shown in Table 3]

4.3 Performance of pairwise models

Having trained multiple sets of pairwise models, we
proceeded to complete multi-class MNIST classification
models using pairwise coupling. There are two distinct
ways how to select pairwise networks into a complete
model — we can take all networks from a single set, or
we can choose for each pair of digits a model from var-
ious sets for which we expect the smallest error. There
are again multiple ways to do the latter — we may choose
based on its (pairwise) error rate, or its (pairwise) loss, and
we may measure those on either the training set or the val-
idation set. The results for various combinations of these
paarameters are shown in Table 4]

From the table we can see that the best result was error
rate 1.24% achieved by a model built from A series of net-
works which were trained on the full training set without
setting aside a validation subset.

In order to contemplate the hypothesis that none of these
selection criteria is reliable (e.g. if sever overfitting occurs
on the train set), we can also compare selection based on
the results on the test pairwise dataset. The results for this
last choice are of course not indicative of real performance
of a method, but could be considered as an estimate of an
upper bound based on a hypothetical method for choos-
ing the best individual pairwise classifiers. The results
shown in Table [5 indicate that there would be significant
improvement, which would rival the precision achieved by
the original Keras network (see Fig. E]left).

5 Discussion

Our experimental results are tantalizing. At the end of
Section] we were able to exhibit neural pairwise clas-
sification models with weights trained only on training
data from MNIST that show comparable performance to
Keras classification network, yet needing only 35% of its
weights. Moreover, they are modular and individual net-
works in the models can be trained in parallel. However,
we are unable to provide an algorithm that would arrive at
such classification models.

Similarly there are plenty of large CNN networks of
the structure considered in this paper that top classifica-
tion rate 99.5% on the problem of classifying twos from
sevens in MNIST dataset. Yet, we were not able to find a
combination of dropout hyperparameters that would yield
the same performance, when training the network only on
twos and sevens. The unsettling suggestion is that it is
advantageous to use irrelevant examples for training deep
convolutional neural networks.

It seems more attention should be paid to binary im-
age classification problems with convolutional networks.

pair | Series A. Series B.
of | trained trained with
digits | without validation
validation subset
subset
train test train | validate | test

0-1 | 0.02 | 0.06 0.01 0.13 0.06
0-2 | 0.03 | 0.29 0.03 0.26 0.26
0-3 | 0.04 | 0.10 0.01 0.22 0.11
0-4 | 0.02 | 0.09 0.03 0.17 0.09
0-5] 0.02 | 0.27 0.04 0.23 0.24
0-6 | 0.13 | 0.44 0.12 0.37 0.44
0-7 | 0.02 | 0.25 0.01 0.16 0.28
0-8 | 0.09 | 045 0.11 0.38 0.52
09 | 0.13 | 0.27 0.12 0.34 0.32
1-2 | 0.08 | 0.29 0.08 0.31 0.29
1-3 | 0.03 | 0.13 0.03 0.18 0.11
1-4 | 0.09 | 0.02 0.10 0.29 0.04
1-5 | 0.01 0.13 0.01 0.15 0.13
1-6 | 0.02 | 0.18 0.02 0.11 0.21
1-7 | 0.16 | 0.25 0.16 0.31 0.24
1-8 | 0.13 | 0.18 0.12 0.40 0.18
1-9 | 0.09 | 0.24 0.11 0.24 0.24
2-3 | 0.08 | 0.29 0.05 0.47 0.29
2-4 | 003 | 0.28 0.03 0.21 0.29
2-5 0 0.09 0 0.17 0.08
2-6 | 0.01 0.32 0 0.15 0.32
2-7 | 0.12 | 0.72 0.14 0.45 0.76
2-8 | 0.08 | 043 0.07 0.45 0.40
29| 003 | 0.36 0.02 0.26 0.35
3-4 | 0.01 0.12 0.02 0.17 0.13
3-5 | 0.12 | 0.53 0.09 0.57 0.51
3-6 | 0.01 0.07 0 0.12 0.09
3-7 1 005 | 041 0.17 0.45 0.56
3-8 | 005 | 035 0.09 0.55 0.42
39| 0.10 | 045 0.09 0.55 0.42
4-5 | 0.00 | 0.04 0 0.18 0.03
4-6 | 0.02 | 0.28 0.04 0.26 0.29
4-7 | 0.03 | 0.16 0.07 0.32 0.18
4-8 | 0.05 | 0.20 0.09 0.36 0.25
49 | 025 | 077 0.20 0.79 0.72
5-6 | 0.19 | 0.63 0.13 0.41 0.57
5-7 | 0.00 | 0.14 0.00 0.19 0.11
5-8 | 0.12 | 0.36 0.14 0.63 0.42
59| 0.08 | 0.35 0.07 0.45 0.30
6-7 | 0.00 | 0.13 0.00 0.10 0.13
6-8 | 0.08 | 0.39 0.08 0.40 0.40
6-9 | 0.00 | 0.26 0.01 0.11 0.25
7-8 | 0.12 | 0.39 0.14 0.38 0.45
7-9 | 0.08 | 0.57 0.11 0.60 0.70
89 | 0.14 | 0.53 0.17 0.64 0.62
Averagg 0.07 0.29 0.07 0.32 0.31

Table 3: Average classification erors for pairwise networks
(in percent)

set of selection criterion error on
classifiers criterion measured MNIST
on
A none / select N/A 1.48 %
all from
withing a
single set
B none / select N/A 1.54 %
all from
withing a
single set
A loss training 1.24 %
dataset
B loss training 1.38 %
dataset
B loss validation 1.32 %
dataset
A error rate training 1.27 %
dataset
B error rate training 1.33 %
dataset
B error rate testing 1.35 %
dataset

Table 4: Performance on MNIST classification

set of selection criterion error on
classifiers | criterion | measured MNIST
on
A error rate testing 0.88 %
dataset
B error rate testing 0.83 %
dataset

Table 5: Performance on MNIST classification

On the surface they may seem trivial and impractical, but
one may expect niche applications such as classification of
medical images [[13]] would naturally have only two classes
to consider. Binary classification problems of images may
also be more amenable to theoretical analysis.

The pairwise models considered in this paper were
formed from share-nothing networks. The hope was that
the pairwise coupling method would be able to counter-
act their smaller individual capacity/precision and achieve
equal or better multiclass classification performance by
combining and extracting diversity of information con-
tained within these networks.

Share-nothing approach is not viable for problems with
larger number of categories than MNIST. There are other
approaches to pairwise multi-class classification with neu-
ral networks that use partial sharing of learning capacity
by pairwise classifiers. It is also possible to create ensem-
ble models without pairwise coupling [14, [15]. We hope
to investigate these questions in future works.

Acknowledgment

Work on this paper was partially supported by grants
VEGA 2/0144/18 and APVV-14-0560. We also thank
Google Inc. for providing us with education credit
#32870744 that we used on Google Compute cloud ser-
vice.

References

[1] LeCun Y., Bengio Y., Hinton G., Deep learning. Nature 521,
(2015), 436444

[2] Hestness J. et al, Deep learning is predictable, empirically,
arXiV:1712.00409

[3] Jouppi N.P. et al, In-datacenter performance analysis of a
tensor processing unit," in Proceedings of ISCA’17, Toronto,
ON, Canada, (2017)

[4] Cortes C., Vapnik V.N., Support-vector networks, Machine
learning, 20, (3), (1995), 273-297

[5] Boser B.E., Guyon M.L., Vapnik V.N., A training algorithm
for optimal margin classifiers, Proceedings of the fifth annual
workshop on Computational learning theory — COLT’92,
(1992), p.144

[6] Platt J., Probabilities for SVM machines, in Advances
in Large Margin classifiers, Smola A.J., Bartlett PL.,
Scholkopf B., Schuurmans, D., Eds. MIT Press, (2000), 61—
74

[7] Chang, C-C., Lin C-J., LIBSVM: A library for support vec-
tor machines, ACM Transactions on Intelligent System and
Technology, vol 2., issue 3, (2011)

[8] LeCun, Y., The MNIST database of handwritten digits,
(1998), http://yan.lecun.com/exdb/mnist

[9] Hastie T., Tibshirani R., Classification by pairwise coupling,
http://fisher.utstat.toronto.edu/pub/tibs/coupling.ps

[10] Chollet F. et al, Keras, (2015), https://keras.io

[11] Wu T-F, Lin C-J., Weng R.C., "Probability estimates for
multi-class classification by pairwise coupling”, Jounral of
Machine Learning Reserach, (2004), 975-1005

[12] Srivastava N., Hinton G., Krizhevsky A., Sutskever I.,
Salakhutdinov R., Dropout: A simple way to prevent neu-
ral networks from overfitting, Jounral of Machine Learning
Research, 15, (2014), 1929-1958

[13] Litjens G. et al, A survey of deep learning in medical image
analysis, Medical Image Analysis, 42, (2017), 60-88

[14] Hartono P., Ensemble of Perceptrons with Confidence Mea-
sure for Piecewise Linear Decomposition, IEEE Int. Joint
Conf. on Neural Networks (IJCNN 2011), (2011), 648-653

[15] P. Hartono, Ensemble of Linear Experts as an Interpretable
Piecewise Linear Classifier, Innovative Computing, Infor-
mation and Control Express Letters Vol. 2, No. 3, (2008),
295-303

	Introduction
	Methodology outline
	Models using large CNN
	Dependence on dropout parameters
	Performance of complete pairwise models

	Models built using small CNN
	Dependence on dropout parameters
	Average performance of pairwise models
	Performance of pairwise models

	Discussion

