
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) 

Shared attention reflected in eeg, electrodermal 

activity and heart rate 

Anne-Marie Brouwer  

Perceptual and Cognitive Systems 

TNO 

Soesterberg, The Netherlands 
anne-marie.brouwer@tno.nl  

 

Ivo V. Stuldreher 

Perceptual and Cognitive Systems 

TNO 

Soesterberg, The Netherlands 

ivo.stuldreher@tno.nl

Nattapong Thammasan 

Faculty of Elec. Eng., Math. & CS 

University of Twente 

Enschede, The Netherlands 

n.thammasan@utwente.nl

Abstract— Monitoring directed auditory attention in groups 

can be helpful in a range of contexts. Concurrent change in 

physiological variables across multiple listeners (physiological 

synchrony – PS) may be a suitable marker of attentional focus 

as caused by shared affective or cognitive processes. We here 

determine PS for EEG (electroencephalography), EDA 

(electrodermal activity) and heart rate in participants who were 

instructed to either attend to an audiobook (n = 13) or to 

interspersed auditory events (n = 13) such as emotional sounds, 

and beeps that attending participants needed to keep track of. 

Even though all participants heard the exact same audio track, 

for both EEG and EDA, PS was higher for participants linked 

to participants in their own attentional group than to 

participants in the other attentional group. No such effect was 

found in heart rate. For a single individual, EEG PS allowed 

attribution to the correct attentional group in 85% of the cases, 

for EDA this was 81%. Hearing is not the same as attending - 

our results are promising for monitoring group affective and 

cognitive processes and how an individual relates to that. 
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I. INTRODUCTION 

We are interested in tools that enable continuous 

monitoring of cognitive or affective processes, without 

requiring conscious action of the monitored individuals. 

Information about attention in a group of individuals, or how 

attention in a certain individual relates to attention in other 

individuals, may be useful to study and support children in an 

educational setting who suffer from attentional problems, or 

helpful to evaluate and design effective educational material. 

Continuous and implicit measures of attention may be 

extracted from physiological signals. For instance, in a series 

of similar stimuli, a deviant that automatically draws 

attention generates a P3 peak in electroencephalography 

(EEG) [1]. Not only bottom-up, but also top-down, ‘self-

determined’ attention to events elicits attention-related 

evoked potentials in EEG [2] [3]. Emotional stimuli have 

been shown to affect physiological measures, such as 

electrodermal activity (EDA) and heart rate [4] [5] and 

cognitive working memory tasks induce changes in a range 

of physiological measures as well [6]. While the 

physiological responses elicited by emotional stimuli and 

mental tasks do not reflect (only) attention, these processes 

are expected to be associated with attention, and hence are of 

interest when one is interested in monitoring attention. 
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In most research on physiological measures of cognitive 

and affective processes, measures are extracted after relating 

physiological signals to the time that stimuli of interest occur, 

i.e., stimuli that are expected to elicit the cognitive or 

affective state of interest. In real-life contexts, this is difficult 

to do from a practical point of view. In addition, it is often not 

clear what the stimulus of interest is. When studying groups, 

a solution to this is to determine the degree to which 

physiological measures of multiple people uniformly change 

(physiological synchrony -PS). Highly similar physiological 

responses, i.e., high PS, would indicate shared attention to an 

apparently generally relevant event. [7] showed that moments 

of high synchrony in EEG signals between viewers of a 

popular television series co-occurred with interesting events, 

and predicted the expressions of interest and attention to the 

television series, as measured by viewership. [8] showed that 

synchrony in EEG signals between students in a classroom 

predicted class engagement and classroom dynamics, a 

relationship that may be driven by shared attention in a group. 

[9] presented participants with the same auditory or 

audiovisual stimulus, but instructed them to either attend to 

this stimulus, or to perform an unrelated mental arithmetic 

task throughout the duration of the stimulus. They showed 

that EEG PS differed between these conditions. There is also 

a body of literature on synchrony in peripheral physiological 

measures such as heart rate and EDA (reviewed by [10]). 

Rather than as indicators of shared directed attention (and 

hence, shared affective and cognitive processes), these have 

been more generally interpreted as indicators of some form 

of connectedness between people. Up to date, PS literature on 

neural and peripheral physiological signals have remained 

separate. 

In the current study we compare PS in neural and 

peripheral physiological variables to determine differential 

attentional focus of individuals who are all presented with the 

same stimulus, and are all attending to it, be it to different 

stimulus aspects. Reminiscent to a classroom setting where 

students hear the teacher talk as well as hearing other auditory 

potentially interesting events, we present our participants 

with the same auditory stimulus, consisting of an audiobook, 

interspersed with short stimuli. Participants are instructed to 

attend to either the audiobook narrative, or to the short 

stimuli. We hypothesize that EEG, EDA and heart rate 

recordings of participants are more strongly synchronized 

with those of participants in the same attentional condition 

compared to the other attentional condition. To the best of our 

knowledge, this is the first study that examines synchrony in 

multiple neural and peripheral physiological measures, and 

the extent to which these measures distinguish between 



groups of individuals with a different auditory attentional 

focus.  

II. METHODS 

A. Participants 

We recorded from 27 participants (aged between 18 and 

48) with no self-reported problems in hearing or attention. 

Participants were recruited from the participant pool of TNO 

(the research institute where the study was conducted). Prior 

to the experiment all participants signed an informed consent 

form and after the experiment they received a small monetary 

award for their time and travelling costs. Data of one 

participant was discarded due to failed physiological 

recordings. The study was approved by the TNO Institutional 

Review Board (TCPE) and the TU Delft Human Research 

Ethics Committee. 

B. Materials 

EEG, EDA and ECG (electrocardiogram) were recorded 

using an ActiveTwo system (BioSemi, Amsterdam, 

Netherlands) at 1024 Hz. EEG was recorded with 32 active 

Ag-AgCl electrodes, placed on the scalp according to the 10-

20 system, together with a common mode sense (CMS) active 

electrode and a driven right leg (DRL) passive electrode for 

referencing. Electrode impedance threshold was set at 20 

kOhm. For EDA, two passive gelled Nihon Kohden 

electrodes were placed on the ventral side of the distal 

phalanges of the middle and index finger. For ECG, two 

active gelled Ag-AgCl electrodes were placed at the right 

clavicle and lowest floating left rib. EDA and heart rate were 

also recorded using wearable systems. These data will be 

discussed elsewhere. 

C. Stimuli and Design 

Each participant listened to the same audio file, composed 

of a 66 min audiobook (a Dutch thriller ‘Zure koekjes’, 

written by Corine Hartman) interspersed with other auditory 

stimuli. Intervals between these short stimuli varied between 

35 and 55 seconds. Half of the participants were asked to 

focus on the narrative of the audiobook and ignore all other 

stimuli or instructions; and half of the participants were asked 

to focus on the other stimuli and perform accompanying 

tasks, and ignore the narrative. The auditory stimuli were 

emotional sounds, beeps, and the instruction to sing a song. 

The order of sounds and beeps was randomly determined. 

Emotional sounds were taken from the IADS 

(International Affective Digitized Sounds – [11]). The IADS 

is a collection of acoustic stimuli that have been normatively 

rated for emotion. Examples of stimuli are the sound of a 

crying baby or a cheering sports crowd. We selected 12 

neutral sounds (IADS number 246, 262, 373, 376, 382, 627, 

698, 700, 708, 720, 723, 728), 12 pleasant sounds (110, 200, 

201, 202, 311, 352, 353, 365, 366, 367, 415, 717) and 12 

unpleasant sounds (115, 255, 260, 276, 277, 278, 279, 285, 

286, 290, 292, 422). Sound duration was 6 seconds. 

Beeps were presented in blocks of 30 seconds, with every 

two seconds a 100ms high (1kHz) or low (250Hz) pitched 

beep. Short-stimuli attending participants needed to 

separately count the number of high and low tones [12]. This 

task was practiced with them beforehand. In total, 27 blocks 

of sounds were presented.  

At the end of the audiobook, the instruction was presented 

to sing a song aloud after the subsequent auditory countdown 

reached 0. This instruction had to be followed by the short-

stimuli attending group and was expected to induce stress 

[12].  

Finally, participants filled out a questionnaire in which 

they were asked to report as many emotional sounds as they 

could remember, to estimate the average number of high and 

low beeps in a sequence, and questions about the content of 

the narrative. 

D. Analysis 

Data processing was done using MATLAB 2018b 

software (Mathworks, Natick, MA, USA). 

EDA was downsampled to 64 Hz. The phasic component 

of the signal was extracted using Continuous Decomposition 

analysis [14] as implemented in the Ledalab toolbox for 

Matlab.  

ECG measurements were processed to acquire the inter-

beat interval (IBI – the inverse of heart rate). After 

downsampling to 256 Hz, ECG was high-pass filtered at 0.5 

Hz. Peaks were detected from a squared version of the 

reconstructed frequency-localized version of the ECG 

waveform using wavelets [15]. The IBI semi-time series was 

transformed into a timeseries. This was done by interpolating 

consecutive IBIs and then resampling at 2 Hz.  

EEG was processed offline with EEGLAB v14.1.2 for 

MATLAB [16]. EEG was first downsampled to 256 Hz, high-

pass filtered at 1 Hz and notch filtered at 50 Hz, using the 

standard FIR-filter implement in EEGLAB function 

pop_eegfiltnew. Channels were re-referenced to the average 

channel values. Logistic infomax independent component 

analysis (ICA, [17]) was performed on more strongly filtered 

data to classify artifactual independent components, i.e., 

components not reflecting sources of neural activity, but 

ocular or muscle-related artifacts. These components were 

removed from the data. Samples whose squared amplitude 

magnitude exceeded the mean-squared amplitude of that 

channel by more than four standard deviations were marked 

as missing data (’NaN’). 

Similarity of EEG between participants in the time-

domain was assessed using correlated component analysis 

(CorrCA) [18]. CorrCA is similar to the more familiar 

principal component analysis, except that projections of 

CorrCA capture maximal correlations between data sets 

instead of maximal variance within a set of data. Rather than 

treating EEG channels separately, this analysis results in 

correlated components. ISC (inter-subject correlation) is 

determined by the sum of correlations of the first three of 

these components. See [9] for a detailed description of the 

procedure that was followed. To discriminate between 

attentional task conditions, correlated component vectors 

were extracted from both the narrative and short-stimuli 

group. Data from each subject was then projected on these 

component vectors. Correlations between each participant 

with all other members of the narrative and short-stimuli 

group were computed. The average correlation between a 

participant and all participants in the narrative and in the 

short-stimuli groups are from now on referred to as ISC-



narrative and ISC-short-stim. To avoid training biases in the 

component extraction step, data from the to-be tested subject 

were excluded in this step. 

Similarity of EDA (phasic component) and IBI between 

participants in the time-domain was assessed using a moving 

window approach, introduced by [19]. Pearson correlations 

were calculated over successive, running 15s windows at 1s 

increments. The overall correlation between two responses 

was computed as the natural logarithm of the sum of all 

positive correlations divided by the sum of the absolute 

values of all negative correlations. As for EEG, ISC-narrative 

and ISC-short-stim were determined for each participant by 

determining his or her ISC with each of the members of the 

narrative group as well as with the short-stimuli group.  

Wilcoxon rank sum tests were performed to test for 

differences in performance with respect to the questions 

about the auditory stimuli between the two attentional groups. 

Paired sample t-tests were conducted to test whether ISC-

narrative and ISC-short-stim were significantly different 

within each attentional group for EEG, EDA and IBI. 

III. RESULTS 

Participants in the narrative group answered more 

questions about the narrative correctly than participants in the 

short-stimuli group (Z=2.68, p=.007), whereas participants in 

the short-stimuli group could name more emotional sounds 

(Z=2.68, p=.007) and were closer to the actual average 

number of high and low beeps (Z=2.82, p=.005) than the 

narrative group. This indicated that participants followed the 

attentional instruction. 

Fig. 1 shows the inter-subject correlation (ISC) averaged 

across participants of the narrative group (left bars) and the 

short-stimuli group (right bars) when paired with participants 

of the narrative group (dark bars) or short-stimuli group (light 

bars). Data of individual participants are plotted on top of the 

bars. For EEG (Fig. 1A) ISC is higher for most participants 

when paired to participants of their own attentional group 

compared to participants from the other group. This is so both 

for participants in the narrative group (t12 = 3.57, p = 0.004) 

as well as the short-stimuli group (t12= -3.57, p = 0.004). For 

EDA (Fig. 1B), the same pattern of results is observed, but it 

only reaches significance for the short-stimuli group (t12= -

3.932, p = 0.002; narrative group: t12= 0.96, p = 0.357). For 

IBI (Fig. 1C), the trend is again the same but no significant 

effects were observed (narrative group: t12 = 0.85, p = 0.413; 

short stimuli: t12 = -1.37, p=0.196). 

When assuming for each participant that she or he follows 

the attentional instruction as indicated by the group with 

whom she or he shows the highest averaged synchrony, 

classification accuracies are significantly higher than chance 

for EEG and EDA. For EEG, classification accuracy is 85% 

both for participants from the narrative and from the short-

stimuli group. For EDA, classification accuracy is 77% for 

participants from the short-stimuli group and 85% for the 

narrative group.  For IBI, classification accuracy is not higher 

than chance in both groups. Chance level was determined by 

using surrogate data with randomized group labels. 

Significance levels were determined using 10000 renditions 

of randomized group labels. An overview of the classification 

data is presented in Fig. 2. 

 

 

Fig. 1. Inter-subject correlations for narrative-attending participants (NA) 

and short-stimuli attending participants (SSA) when related to participants 
of each of the two groups, for EEG (A), EDA (B) and IBI (C). Connected 

dots display subject-to-group correlations of each of the individual 

participants, where blue lines indicate individuals for which ISC-NA > ISC-
SSA and red, dotted lines indicate individuals for which ISC-SSA > ISC-

NA. Paired sample t-tests revealed that within-group correlations were 

higher than between-group correlations in EEG and EDA (**p < 0.01). 



 

Fig. 2. Classification accuracy of inferring attentional group from ISC in 

EEG, EDA and IBI where each participant was designated to be in the 

attentional group for which he or she they showed the highest ISC. Data are 
presented seperately for narrative-attending participants (NA) and short-

stimuli attending participants (SSA). Theoretical chance level is 0.5. 

Statistical chance level is indicated by the dashed line.  

IV. DISCUSSION 

We showed that PS in both EEG and EDA is indicative of 

shared attention: EEG and EDA signals of participants are 

more strongly synchronized with those of participants  in the 

same attentional condition compared to the other. For IBI, we 

did not find this. 

In our setting, all participants attended to the auditory 

stimulus. While participants in the short-stimuli condition 

were instructed to ignore the narrative, it was probably hard 

to do this at times without concurrent short-stimuli. In 

contrast to e.g. the study by [9], our participants did not have 

another task at these times and their attention was likely 

directed to the auditory environment, since they expected an 

auditory stimulus that was relevant for them. We therefore 

expect that the difference between the groups and therefore, 

our PS effects, will be strongest when only considering the 

times during which concurrent short-stimuli are played. In 

future analysis we will first recover occurrence of generally 

high PS (which will also indicate which events generated 

generally high shared attention) and then focus analysis at 

those times, to examine whether this will result in even 

clearer effects, perhaps also showing an effect for IBI. 

EEG PS performed relatively well, as might have been 

expected based on previous PS literature and the more direct 

link with attention. However, EDA did well too, which, even 

though wearable EEG systems are available, is convenient 

from a user perspective. The finding that IBI performed worst 

may not be unexpected given the fact that the relation 

between heart rate and mental state seems less 

straightforward than EDA. Whereas EDA has consistently 

been found to be positively related to arousal [20], the 

relation between emotional stimuli and heart rate has been 

found to be more complex. Both positive (e.g. [13]) and 

negative (e.g. [21]) relations between heart rate and arousal 

been reported. The reason for this is probably that arousal can 

be associated with the body being prepared for action, cf. the 

defense reflex, or with a concentrated, focused state, cf. the 

orienting reflex, where the defense system is associated with 

heart rate accelerations and the orienting system with 

decelerations [22]. The type of response to a certain 

emotional stimulus can differ between individuals and 

occasions. 

In future analysis, we will examine patterns of synchrony 

in the different modalities as a function of stimulus type. 

Events relevant for mental tasks (counting the beeps) may be 

strongly associated to synchrony in EEG, whereas emotional 

stimuli (IADS and the instruction to sing a song) may be 

strongly associated to synchrony in EDA. Patterns of 

multimodal synchrony might even allow us to identify the 

type of shared mental activity and therewith the instigator of 

shared attention. Combining synchrony measures from 

different modalities may support detection of (certain) 

relevant events, although it is still unclear how this can be 

done best [23]. It is also of interest to relate PS to behavioral 

or cognitive performance on tasks related to the to be attended 

stimuli. An individual’s (moment of) low PS may be 

predictive of later poor performance. Finally, we want to 

mention that in the current study, we purposely examined 

interpersonal PS in a situation with very limited eye- or body 

movements, and no interpersonal communication. This was 

done in order to avoid possible confounds of physiological 

measures with movements [24] and with the view of studying 

PS in the context of attention, apart from interpersonal 

interaction. However, it would be of interest to bring this 

view together with the large literature on interpersonal 

synchrony in behavioral measures such as gestures and 

speech during social interaction [25]. 

ACKNOWLEDGMENT 

The authors thank Ana Borovac for help with recording 

the participants.  

REFERENCES 

[1] Polich, J. (2007) Updating P300: An Integrative Theory of P3a and 

P3b. Clin. Neurophysiol. 118(10), 2128–2148.  

[2] Donchin, E., Spencer, K. M., and Wijesinghe, R. (2000). The mental 

prosthesis: assessing the speed of a P300-based brain-computer 

interface. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 174–179. 

[3] Hill, N. J., & Schölkopf, B. (2012). An online brain–computer interface 

based on shifting attention to concurrent streams of auditory stimuli. 

Journal of Neural Engineering, 9(2), 026011. 

[4] Boucsein, W. (1992). Electrodermal activity. New York, NY: Plenum 

Press. 

[5] Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: 

a review. Biol. Psychol. 84, 394–421. 

[6] Hogervorst, M. A., Brouwer, A.-M., & van Erp, J.B.F. (2014). 

Combining and comparing EEG, peripheral physiology and eye-related 

measures for the assessment of mental workload. Front. in Neurosci., 

8, 322. 

[7] Dmochowski, J. P., Bezdek, M. A., Abelson, B. P., Johnson, J. S., 

Schumacher, E. H., & Parra, L. C. (2014). Audience preferences are 

predicted by temporal reliability of neural processing. Nature 

communications, 5, 4567. 

[8] Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., 

McClintock, J., Rowland, J., Michalareas, G., van Bavel, J. J., Ding, 

M. & Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world 

dynamic group interactions in the classroom. Curr. Biol., 27(9), 1375-

1380. 

[9] Ki, J. J., Kelly, S. P., & Parra, L. C. (2016). Attention strongly 

modulates reliability of neural responses to naturalistic narrative 

stimuli. Journal of Neuroscience, 36(10), 3092-3101. 

[10] Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O., 

McGee, H. A., Liu, S., & Goodwin, M. S. (2017). Interpersonal 



autonomic physiology: A systematic review of the literature. 

Personality and Social Psychology Review, 21(2), 99-141. 

[11] Bradley, M. M. and Lang, P. J. (2007). The International Affective 

Digitized Sounds (IADS-2): Affective ratings of sounds and instruction 

manual. University of Florida, Gainesville, FL, Tech. Rep. B-3. 

[12] De Dieuleveult, A. L., Brouwer, A. M., Siemonsma, P. C., Van Erp, J. 

B., & Brenner, E. (2018). Aging and sensitivity to illusory target 

motion with or without secondary tasks. Multisensory Research, 31(3-

4), 227-249. 

[13] Brouwer, A. M., & Hogervorst, M. A. (2014). A new paradigm to 

induce mental stress: the Sing-a-Song Stress Test (SSST). Frontiers in 

neuroscience, 8, 224. 

[14] Benedek, M. & Kaernbach, C. (2010). A continuous measure of phasic 

electrodermal activity. Journal of Neuroscience Methods, 190(1): 80–

91. 

[15] The Mathworks, Inc.,  ‘R wave detection in the ECG’, 2015. [Online] 

Available: https://nl.mathworks.com/help/wavelet/ug/r-wave-

detection-in-the-ecg.html. [Accessed: 19- Mar- 2019]. 

[16] Delorme, A. and Makeig, S. (2004). Eeglab: an open source toolbox 

for analysis of single-trial eeg dynamics including independent 

component analysis. Journal of Neuroscience Methods, 134(1):9–21. 

[17] Bell, A. J. & Sejnowski, T. J. (1995). An information-maximization 

approach to blind separation and blind deconvolution. Neural 

Computation, 7(6):1129–1159. 

[18] Dmochowski, J. P., Sajda, P., Dias, J., & Parra, L. C. (2012). Correlated 

components of ongoing eeg point to emotionally laden attention–a 

possible marker of engagement? Frontiers in Human Neuroscience, 

6:112. 

[19] Marci, C. D. (2006). A biologically based measure of emotional 

engagement: Context matters. Journal of Advertising Research, 46(4): 

381–387. 

[20] Andreassi, J. L. (2007). Psychophysiology: Human Behavior and 

Physiological Response (5th ed.). LLC, New York: Psychology Press, 

Taylor & Francis Group. 

[21] Brouwer, A. M., Hogervorst, M. A., Reuderink, B., van der Werf, Y., 

& van Erp, J. B. F. (2015). Physiological signals distinguish between 

reading emotional and non-emotional sections in a novel. Brain-

Computer Interfaces 2(2–3), 76–89. 

[22] Graham, F.K., & Clifton, R.K. (1966). Heart-rate change as a 

component of the orienting response. Psychol. Bull. 65(5), 305. 

[23] Stuldreher, I. V., de Winter, J. C. F., Thammasan, N.,  Brouwer, A.-M. 

(in press). Analytic Approaches for the Combination of Autonomic and 

Neural Activity in the Assessment of Physiological Synchrony. 

Proceedings 2019 IEEE International Conference on Systems, Man and 

Cybernetics (SMC). 

[24] Brouwer, A.-M., Zander, T. O., van Erp, J. B. F., Korteling, J. E. & 

Bronkhorst, A. W. (2015) Using neurophysiological signals that reflect 

cognitive or affective state: six recommendations to avoid common 

pitfalls. Frontiers in Neuroscience, 9, 136. 

[25] Delaherche E., Chetouani M., Mahdhaoui A., Saint-Georges C., Viaux 

S. & Cohen D. (2012). Interpersonal Synchrony: A Survey of 

Evaluation Methods across Disciplines, IEEE Transactions on 

Affective Computing, 3(3), 349-365. 

 

 


