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Abstract. Context: Technical debt is known to impact maintainabil-
ity of software. As source code files grow in size, maintainability becomes
more challenging. Therefore, it is expected that the density of technical
debt in larger files would be reduced for the sake of maintainability. Ob-
jective: This exploratory study investigates whether a newly introduced
metric ‘technical debt density trend’ helps to better understand and ex-
plain the evolution of technical debt. The ‘technical debt density trend’
metric is the slope of the line of two successive ‘technical debt density’
measures corresponding to the ‘lines of code’ values of two consecutive
revisions of a source code file. Method: This study has used 11,822 com-
mits or revisions of 4,013 Java source files from 21 open source projects.
For the technical debt measure, SonarQube tool is used with 138 code
smells. Results: This study finds that ‘technical debt density trend’ met-
ric has interesting characteristics that make it particularly attractive to
understand the pattern of accrual and repayment of technical debt by
breaking down a technical debt measure into multiple components, e.g.,
‘technical debt density’ can be broken down into two components show-
ing mean density corresponding to revisions that accrue technical debt
and mean density corresponding to revisions that repay technical debt.
The use of ‘technical debt density trend’ metric helps us understand the
evolution of technical debt with greater insights.

Keywords: Code Debt · Technical Debt · Technical Debt Density ·
Slope of Technical Debt Density · Technical Debt Density Trend · Soft-
ware Metrics · Code Smells

1 Introduction

In recent years, the technical debt metaphor has received a lot of focus both
from the academia and the industry due to its advantages of communicating
and quantifying the impact of sub-optimal software artifacts. Researchers are
continually working to find new metrics and techniques to calculate the accrual
and repayment of technical debt, to find new ways to visualize it, etc.

Copyright © 2019 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

87



Code smells are related to internal software qualities that accrue technical
debt. Kruchten, Nord, and Ozkaya have considered code smells as legitimate
artifacts in their landscape of technical debt [7]. Code smells impact various
software qualities, e.g., reliability and maintainability [13, 15, 5]. Likewise, rela-
tions of code smells with software faults have also been investigated [14, 8].

The principal of technical debt related to a code smell is the expected time
to fix it. SonarQube [1] is a tool that reveals a plethora of code smells and other
violations and uses measures to calculate the principal of technical debt based
on heuristics developed together with expert developers. Understanding how
these measures evolve over time (e.g., how much principal has been accumulated
and refactored) and how these measures evolve with respect to the change in
size of different files, would tell us more about how developers accumulate and
refactor technical debt. In addition, we do not just want to understand if the
absolute technical debt has grown from last commit, but we are interested in
understanding whether the density of technical debt has changed. For example,
adding many functionalities (corresponding to a large amount of code) to a file
but accumulating only a little amount of technical debt, should be considered
different from adding the same amount of technical debt but adding just a few
lines of code. Within the context of this research, technical debt density indicates
the amount of technical debt per 100 lines of code. To our knowledge, in depth
investigation of the evolution of technical debt density has not been studied. To
understand and explain the evolution of technical debt, we have introduced a
new metric ‘technical debt density trend’ . A detail description of this new metric
is given in the next section.

The goal of this study is to investigate the evolution of technical debt concern-
ing the newly introduced metric ‘technical debt density trend’ . We particularly
want to investigate whether the trend metric helps to understand the evolution
of technical debt better. Therefore, this exploratory study has the following re-
search question. RQ: How do the ‘technical debt density trend’ metric contribute
to explain the evolution of technical debt?

To answer the research question, we conducted an exploratory empirical
study based on 21 open source projects collected from the GitHub. We have
extracted 13,120 data points from 4,013 files and 11,822 commits. Each of these
revisions are automatically checked by SonarQube tool against 138 code smells.

We have observed that a file has the highest level of ‘technical debt density’
at the earlier stage of its revisions and ‘technical debt density’ keeps reducing as
the file size grows. We have devised a sophisticated way to calculate ‘technical
debt density trend’ . According to our observations, the ‘technical debt density
trend’ metric is interesting in different ways. One of the most interesting aspect
is ‘technical debt density trend’ metric can be used to tag other metrics so they
the other metrics can be explained with two components (in terms of positive
and negative ‘technical debt density trend’ ) revealing the underlying dynamics of
how overall ‘technical debt density’ evolves resulting from the mean of ‘technical
debt density’ corresponding to positive ‘technical debt density trend’ and mean of
‘technical debt density’ corresponding to negative ‘technical debt density trend’ .

88



Description of the metrics are given in Section 2 and the detail derivation
of the ‘technical debt density trend’ is given in Section 2.1. Related work is
presented in Section 3 so that we have a clear picture of the metrics described in
Section 2. Project selection, data collection, data processing and validity threats
are discussed in Section 4 (methodology). Results with inline discussions are
presented in Section 5 followed by conclusions and future work in Section 6.

2 Description of the Selected Metrics

In this section, we describe the metrics along with a discussion about their
advantages for the purpose of technical debt evolution. The metrics are listed in
Table 1.

Table 1: Metrics used in this study.

Metric Name Description Value Type

ncloc Number of physical lines of code that are not comments Integer
(line only containing space, tab, and carriage return are ignored)

tech debt Effort (time in minutes) to resolve identified code smells Integer

td density Density of tech debt indicating tech debt per 100 ncloc. Float
Calculated as: td density = (tech debt/ncloc)*100

td density trend Slope of the line of two points (nclocp, td densityp) & Float
(nclocq, td densityq), where p and q are two successive commits.

SonarQube’s ‘technical debt’ (tech debt) metric indicates the total amount of
time require to fix all the identified issues resulting from the source code analysis
based on a set of rules (code smells, in our case). If we want to compare technical
debt in two files or projects, we cannot directly use corresponding technical debt
measures as the metric tech debt is not normalized, meaning, it does not make
sense to compare files or projects of different size because a larger code base
is likely to contain more technical debt. The same problem remains even if we
consider two successive commits of a project or revisions of a file due to the
reason that they are not of equal size.

The density measure of technical debt is a normalized measure, which indi-
cates the amount of technical debt per n ‘lines of code’ (ncloc), say n = 100.
When the normalized measure is used, we can compare technical debt irrespec-
tive of the code size. Since, ‘technical debt density’ (td density) is a normalized
measure of technical debt, we assume, td density does not suffer from the afore-
mentioned problems. Therefore, we want to use td density as a measure for the
evolution of technical debt.

Since, we have collected data at the file-level, our ncloc values indicate file
size. A discussion regarding the sampling strategy of ncloc is available in Sec-
tion. 2.1 and a description of the ncloc samples is available in Section. 4.3.
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2.1 ‘Technical Debt Density Trend’ (td density trend) Metric

Motivation As researchers, we not only want to know whether a latest commit
of a project or revision of a file is better than the state of the technical debt before
that commit/revision but also the extent to which technical debt has accrued or
repaid. The practitioners might not always be interested about the detail numer-
ical scale of the density but can be interested to know whether the latest com-
mitted code was better or worse in terms of tech debt . Let us imagine a scenario
where the latest commit of a project has increased total size (‘lines of code’ )
and total amount of tech debt of a project. From two successive td density val-
ues alone, we have no way to conclude whether the quality of the code written in
the latest commit was better or worse compared to the code base before it. There-
fore, we need a metric that can answer these questions. To serve this purpose, we
have introduced a new metric ‘technical debt density trend’ (td density trend),
which is not a delta measure between two successive td density . The metric
td density trend resembles the same mathematical concept, a slope or gradient
does for a straight line. A slope or gradient of a line measures the steepness of
the line, which can be defined as ‘change in y’ over the ‘change in x’ of a line.
So, constructing a slope requires at least two variables. Considering the slope
of td density (that requires two dimensions or two variables) is better compared
to taking the difference between two successive td density (or the delta measure
which need only a single variable). Because, slope as td density trend has the ad-
vantage that it incorporates both the td density and the ncloc measures. Since
td density is a normalized measure, using delta of td density for td density trend
is correct only if all the values within the set of ncloc are equidistant. In reality,
this is not the case, meaning, size of file revisions are different. However, slope
as td density trend can be used in both cases, i.e., values within the set of ncloc
are equidistant or non-equidistant.

Measurement Approach To measure the trend, we can take the slope of
a line between two td density corresponding to two successive revisions. This
approach still has an issue as the size (ncloc) of the commit varies which does
not allow to properly sample the data points in terms of ncloc so that there
is a good spread of data points. Another approach to tackle this issue can be
by considering ranges of ncloc, e.g., [1, 10], [11, 20], [21, 30], etc., and grouping
all available data points according to these ranges. It does not make sense to
group files that has their entire revision within such ranges. However, we can
map the beginning data points related to files and assign within such ranges.
For example, in Fig. 2(a), if we consider ranges [1, n1] and [(n1 + 1), n2] and so
on, we have two data points for the two files, with one data point for each of the
first two ranges. Still we have the issue that these two files might vary in size
(ncloc) and number of revisions which cannot be considered in this approach, as
this approach is based on only the starting of a file. A better approach would be
to sample the data exactly at some specific ncloc points say n1, n2, n3, etc. as
shown in Fig. 2(b).
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Fig. 1: Calculation of td density
at the intercepting point of nk

and the line between points
(ni, dp) and (nj , dq).
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Fig. 2: Data processing for two revisions of two files. (a) original data (b) sam-
pling data at specific points (c) getting a new dimension (td density trend) in
the data.

Let us consider, for two successive revisions of a file, we have a corresponding
pair of data points (ni, dp) and (nj , dq), where n indicates ncloc and d indicates
td density as per Fig. 1. We can find any value of dr (where dp <= dr <= dq)
corresponding to nk (where ni <= nk <= nj) using the following equation which
is derived by plugging in s, b (as mentioned in the inset of Fig. 1), and x in the
line equation y = m ∗ x + b .

dr = dp + (
dq − dp
nj − ni

)(nk − ni) (1)

We have calculated td density values corresponding to ncloc at specific points
n1, n2, n3, etc. by using Equ. 1 as illustrated in Fig. 2(b). Since at this point
all successive data points for a file have an equal ncloc difference and we can
calculate the slope of line or td density trend from each successive data points,
we add td density trend measure with each data point if there exists a next data
point and ignored the last data point. This transforms our two-dimensional data
points as in Fig. 2(b) to three-dimensional data points in Fig. 2(c). This approach
simplifies the problem as for any of our specified ncloc points (n1, n2, n3, etc.), a
corresponding td density trend value says whether the td density has increased
or decreased starting from that point. Since td density trend mathematically
resembles the slope of a line, the magnitude of the td density trend express the
rate of change of td density , which can also be an indicator of accrual/repayment
of technical debt.
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3 Related Work

Some work on the evolution of Technical Debt has been carried out. Most of
the existing studies are focused on the evolution of code smells, with only a few
recent studies focusing specifically on Technical Debt.

In [4], the authors look at at the evolution of both non-normalized and nor-
malized technical debt over time. In the previous section, we have explained why
evolution based on non-normalized ‘technical debt’ metric is not meaningful, so
we have avoided it. Since there is a positive correlation of ncloc and ‘techni-
cal debt’, which is also graphically demonstrated in this study, their result of
increasing growth of ‘technical debt’ for non-normalized case is not useful. Al-
though their ‘technical debt’ measurement from SonarQube is the same as ours,
the approach is different. The authors analyze one commit from every week,
however, we analyzed every commit in the master branch. They gathered their
measures at the project level, we have collected them at the file-level, there-
fore, we have data at a much refined-level. However, most importantly, we have
explained technical debt evolution based on a newly introduced metric.

In [2], the authors study the evolution of Technical Debt, measured by Sonar-
Qube, to understand how the experience of developers affects the accumulation
and refactoring of violations. However, the authors do not observe the rela-
tionship among td density and size over different commits, they only count the
absolute increment of TD over a single commit and study such increment with
respect to different variables than the ones considered in our study.

Many studies concern the evolution of code smells, but most of them focus
either on a few code smells, or they do not consider the principal amount of
technical debt, or they do not study the evolution of td density with regard to
td density trend . For example, in [3], the authors analyze the evolution of four
code smells over time in two large Open Source projects. Our scope is however
to look at the evolution of Technical Debt over multiple projects and a large
selection of 138 code smells.

In contrast to the existing literature, the key contribution of our study is
that we have used a new metric td density trend and combined this metric with
the traditionally used td density metric to discuss the evolution of tech debt . We
have identified and discussed some interesting attributes of the td density trend
metric. In summary, this study has introduced a new way of looking at the evo-
lution of technical debt with new insights and elaborate explanations in various
scenarios using the proposed td density trend metric.

4 Methodology

The reason for using SonarQube is its industrial acceptance and popularity in
the recent years. SonarQube is considered as the de-facto source code analysis
tool to measure technical debt [6].
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4.1 Case and Subject Selection

Open source software projects on GitHub serve as the data source for this study.
We have used 21 open source Java projects from GitHub. These projects are se-
lected based on several criteria such as the minimum LOC is 4,000, the minimum
number of commits is 150, the minimum cumulative number of developers is five,
and developed by well-known organization. We partially used GitHub’s search
functionality which has limitations to fulfill our search criteria. The project se-
lection was started from the GitHub’s showcase4 for open source organizations
then continued with snowball sampling method. An overview of the selected
projects is given in Table 2. More detail information regarding these projects
are available in previous work [9, 10].

Table 2: Overview of the Selected Projects

Organization Project Name [ Number of Analyzed Revisions (commits),

Project Duration (months), Analyzed Java Code (KLOC) ]

Microsoft malmo [295, 5, 14]; oauth2-useragent [171, 12, 3]; Vso-intellij [305, 12, 64];

thrifty [242, 12, 44]; Git-Credential-Manager-for-Mac-and-Linux [141, 13, 5]

Twitter Ambrose [167, 48, 5]; cloudhopper-smpp [94, 57, 12]; elephant-bird [449, 76, 23]

Netflix Fenzo [98, 20, 11]; ribbon [223, 46, 22]; astyanax [549, 55, 55]

square Dagger [306, 46, 9]; retrofit [776, 72, 13]; picasso [518, 42, 10]

Esri Solutions-geoevent-java [218, 38, 35]; geometry-api-java [100, 43, 76]

Shopify Nokogiri [1,788, 75, 26]

SAP Cloud-sfsf-benefits-ext [52, 24, 3]

Apache Kafka [2,302, 64, 89]; zookeeper [1,474, 109, 73]; zeppelin [1,606, 39, 65]

Total [11,874, 907, 658]

4.2 Data Collection

For data collection, we have used the SonarQube [1] to analyze all revisions in
the master branch available on GitHub for each selected projects and generate
various measures of our interest. Table 1 shows metrics used for this study. De-
scriptions of the metrics collected using the tool are taken from the SonarQube’s
database and metric definition page5.

SonarQube’s Java plugin has more than 300 code smells classified into dif-
ferent categories. We have skipped all code smells that are categorized as minor
because such code smells have less impact and the probability of the worst thing
happening due to such code smells are low. We reviewed the rest of the code

4 https://github.com/showcases/open-source-organizations
5 https://docs.sonarqube.org/display/SONAR/Metric+Definitions
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smells and ignored code smells within the “convention” category that are specific
to organizations. However, we kept the code smells related to naming conven-
tions that are specific to Java and not specific to an organization. The list of
138 code smells used in this study is not included in this report due to space
limitation, instead, are made publicly accessible online [11].

Table 3: Chronological steps for data processing.
St-

ep

Operation Number

of files

Number

of file

segments

Number

of data

points

1 Raw data collected from database 11,358 2,527,990

2 Data points with NONE value removed 11,358 2,527,990

3 Remove successive duplicated data points 11,358 24,976

4 Files with single data points removed 4,013 18,371

5 Split every two successive data points into pairs 14,358 14,358*2

= 28,716

6 Transform every pair of data points so that we have data at

specific ncloc points, i.e., n1, n2, n3, etc. like in Fig. 2(b)

14,358 28,716

7 Delete any file segment that has a single data points 3,665 17,584

8 Create new pairs/segments by taking every two successive

data points of the existing file segments. A pair is of the form

(n1, d6), (n2, d5) as shown in Fig. 2(b)

13,919 13,919*2

= 27,838

9 Calculate slope s1 from (n1, d6), (n2, d5) using Equ. 1 as

shown in Fig. 2(b) and transform the pair into a single data

point with three elements (n1, d6, s1) as seen in Fig. 2(c)

13,919

10 Remove 782 data points associated to any ncloc >1200 be-

cause of lower number of samples for higher ncloc values

13,137

11 Remove 17 outliers related to td density 13,120

4.3 Data Processing

We went through an elaborate processing of the collected data. We present the
data processing steps chronologically in Table 3. At the end of the data process-
ing, we have every data point in the form (ncloci, td density i, td density trend i).
Here, ncloci means the ncloc value at a certain point i. Here, i is a set of values
{10, 20, 30,...,1200}. The metric td density i denotes td density at ncloci and
td density trend i indicates to the slope of the line connecting points (ncloci,
td density i) and (ncloci+1, td density i+1). It can be noted that our final data
points are independent of each other. Descriptive statistics regarding the pro-
cessed data is reported in the appendix [11].
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4.4 Threats to Validity

A general weakness of case study research is generalizability due to the reason
that samples are not randomly selected from the population. There are two
primary reasons why the selection of projects is not randomized for this study.
First, the quality of the projects. According to GitHub’s statistics for 20176, 6.7
million new users joined the platform, of them 48% are students and 45% are
totally new to programming also 4.1 million people created their first repository.
Therefore, it is important that projects are carefully selected that hold quality up
to a certain-level. We have selected projects from the well-known organizations
with criteria like LOC, number of revisions, number of developers etc. so that
our results are generalizable within such a context.

Programming languages have different constructs, therefore, measures of code
metrics may vary due to programming languages. To minimize the effects of
programming languages, we have selected projects that are mainly labeled as
Java projects.

In section 2.1 we have discussed various threats related to different ap-
proaches to sample and process the raw data for this study and concluded that
sampling data at specific ncloc points with equidistance among the ncloc data
points is a better approach which is considered for this study.

We discussed the chronological steps for data processing in Table 3. In step-
5, we split data points of every file into sets of two successive data points. If
the transformation in step-6 could be performed without the split in step-5, we
could possibly have more data points in step-7. However, the exact amount of
data loss cannot be measured here without actually doing it because step-6 also
results in a loss of some data points specifically at the boundaries, meaning at
the minimum and maximum ncloc positions of a file. Since our finally processed
data points are independent of each other, loss of some data points either at the
boundary or in the middle do not significantly impact the validity of this study.

5 Results and Discussions

For each result presented in this section, we provide an inline discussion. In the
legends of Fig. 3, 4, and 6 dense slope indicates to td density trend .

5.1 Understanding overall accrual and repayment of technical debt
throughout the development of source files

Since the td density trend metric is constructed from the slopes of lines between
two successive pairs of (ncloc, td density) values, the graphs in Fig. 3 can also
be read as a representation of our data points at different ncloc values.

Since the ‘count of td density ’ measure is not normalized, we are not inter-
ested about shapes of the positive and negative td density trend graphs in Fig.
3 but in the difference between them. The difference gives us a general idea at

6 https://web.archive.org/web/20180602170102/https://octoverse.github.com/
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Fig. 3: Line graph
showing ‘count of
trend data points’,
which is not a
normalized mea-
sure, therefore,
we are not inter-
ested about the
shapes of the pos-
itive and negative
td density trend
but at the delta be-
tween them which
is the blue graph in
this figure.

which phases (from starting to the end) source files accrues and repays technical
debt. Such a view of technical debt is not possible without the td density trend
metric. We get the positive and negative td density trend graphs by tagging
files’ revision points or in our case trend data points with a positive or negative
td density trend and this has an interesting and easy to understand intuition. We
can simply tell, whether a given revision (corresponding to the ncloc value of a
trend data point) a file is contributing toward the increase or decrease of the den-
sity of technical debt or td density , which can also be interpreted as accrual or
repayment of technical debt without the actual magnitude of debt. This gives us
interesting insights how developers deal with technical debt density throughout
the life-cycle of a file or project. From this understanding, we can say from Fig. 3,
there are more revisions/commit at the beginning (at about 70-200 ncloc range)
of life-cycles of files that contribute toward reduction of td density than accrual
of td density. The difference between the positive and negative graphs gradually
decreases up until 700 ncloc and after this we see that the two td density trend
graphs are kind of inter-twined.

5.2 Effect of the cumulative nature of the tech debt metric

The overall mean and mean of positive and negative td density trend are re-
ported in Fig. 4 where the slopes of the td density is much departed from zero
at the beginning of the file and they gradually comes close to zero over time
as the file size grows. One reason of this is that when the code size is small, a
code change of an average size can highly influence the overall td density there-
fore the slope of the td density i.e., td density trend . In the opposite manner,
when the size of a file grows, a regular size change in the file would result in
a much smaller change in the density of that file. According to our experiences
of investigations [10, 12] of cumulative vs non-cumulative metrics, we opine that
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Fig. 4: Line
graphs show-
ing mean
td density trend .
A close-up view
is given in the
inset.

the high steepness of the td density trend graphs at the beginning is due to
the cumulative nature of td density metric. Such an effect can be avoided if non-
cumulative (or organic as we described them in [10]) measure of tech debt is used
to measure organic td density . An organic tech debt measure can be a delta or
a code churn measure that would consider the tech debt exclusively written in a
specific commit or revision without consolidating any previously written code,
thus an organic td density metric would be free from the effects we observe here
from the cumulative td density metric. It would be interesting to investigate how
Fig. 4 would look like if it is constructed from the non-cumulative (or organic)
td density measure. However, such an investigation is out of the scope of this
study and can be considered as a future work.

5.3 Evolution of technical debt when td density is explained with
td density trend

We would like to look at the scatter plot in Fig. 5 and the line-graphs in Fig. 6
showing relations between ncloc and td density metrics. While Fig. 5 shows all
of our processed data points for these two metrics, Fig. 6 shows the overall
td density mean values. It is quite interesting that on average a file has the
maximum density of technical debt (td density) at ncloc 20. From thereon, the
td density keeps reducing. It drops dramatically within the range 20-50 ncloc
and then a moderate reduction within 50-175 ncloc followed by a slight reduction
until about 350 ncloc. For even higher ncloc we see a slight growth of td density
up to 900 ncloc and then a moderate decrease in td density until the end i.e.,
ncloc 1200. The beginning dramatic drop in Fig. 6 followed by a gradual drop
is also influenced by the cumulative measure of td density , which we described
earlier in this section for Fig. 4. Since several factors are involved for the slope
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Fig. 5: Scatter
plot for the
metrics ncloc
and td density .
Here, red data
points indi-
cate positive
td density trend
and green data
points indi-
cate negative
td density trend .

Fig. 6: Line
graphs showing
mean density of
technical debt
(td density).
This figure is
an accumulated
representation
of the data
points in Fig. 5.

dynamics of Fig. 6, it is necessary to investigate the relations between ncloc and
td density without the effect of cumulation.

In Fig. 5 some data points somewhat outside of the rest of the data points.
For example, the series of red points between 400-500 td density in Fig. 5. Since
we have high amount of samples within the ncloc range 100-300, the effect of
these points would not be significant and we do not observe any irregular pattern
within this range in Fig. 6. There are few other data points, e.g., the green dots
between 300-400 td density and 450-600 ncloc and some other green dots about
below these points. These points quite stand out and can possibly be considered
as outlier. We have not excluded them from our data set. As we have fewer
samples within this range i.e., 450-600 and above as shown in Fig. 6, they might
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potentially be the reason why we see the slight rise of td density within the same
range of ncloc.

The observation of higher td density at the beginning of the files revisions
is quite interesting. One possible reasons for this can be developers are reckless
about accruing debt when the code is small because small code is easy to read and
maintain therefore bearing more debt is not considered as a problem. Another
probable reason could be reduced understanding of the problem due to lack of
understanding of requirements or even lack of clear requirements which could
influence the developers to make invalid assumptions and write poor code. More
research is required to investigate the actual reasons for such an observation.

Fig. 7: Scatter plot
for the metrics
td density and
td density trend .
Here, red data
points indi-
cate positive
td density trend
and green data
points indi-
cate negative
td density trend .

Now, we look into Fig. 7. This is a more straight-forward figure that tells us,
the higher the td density , the greater is the td density trend . Since we have al-
ready discussed the relations between ncloc-td density trend and ncloc-td density ,
we know that the higher td density comes at the beginning of a file. This figure
shows an expected practice, i.e., if the td density is higher, quickly repaying the
debt would reduce the td density and increase the maintainability. In our data,
we see that the td density is decreased as the code size increases, which is some-
thing we want. More importantly, we have divided the measures according to
positive and negative td density trend which give us insights about the rate at
which we are accruing and repaying debt.

Finally, we are reporting an interesting difference between td density trend
and td density plotted against ncloc in Fig. 4 and 6 correspondingly. When we
look at the graphs (all three graphs in red, green and blue), we see that Fig. 4
has much smooth and simpler pattern than the graphs in Fig. 6. Even in the
close-up view in the inset of Fig. 4, the smoothness of the curve is observed.
This makes the relationship between ncloc and td density trend interesting for
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the purpose of predicting td density or even technical debt. The three graphs in
Fig. 4 have a more uniform shape than the three graphs in Fig. 6. If for a project,
we find the mean td density trend as any of the three graphs in Fig. 4 and we
know the latest td density for the project, we can predict the td density trend for
the future and predict td density . From Fig. 4, we see that the mean graph for
td density trend (in blue) converges to zero much earlier and then it keeps moving
around zero. This happens because, this is the mean of the positive and negative
td density trend graphs. For both positive and negative td density trend graphs,
we see that they exhibit a trend of convergence to zero but do not merge with
zero as earlier as the blue mean graph does. Of course, here the two graphs for
positive and negative td density trend acts as two components of the blue mean
graph. Our supposition is, can we better predict technical debt when we divide
and analyse the dynamics of technical debt into its two primary components that
are accrual and repayment of technical debt. However, a detail analysis of the
properties and usefulness of td density trend for predicting td density is beyond
the scope of this paper.

5.4 Componentization of Technical Debt

Componentization of a vector is a proven problem solving approach in many
scientific discipline, e.g., physics, vehicle dynamics. A vector has both magni-
tude and quantity. Any vector in a two-dimensional plane can be expressed of
two components. Since a vector is an outcome of the interactions of its compo-
nents, controlling a vector is performed by controlling its individual components.
Similarly, technical debt is a vector like concept which has both the magnitude
(tech debt , td density values) and direction (td density trend). Throughout the
development of software, we continuously keep working with accrual and re-
payment of technical debt in an intertwined-manner. Therefore, discussing and
analyzing technical debt in terms of these two components should give us more
accurate and precise estimation and possibly better prediction of technical debt.

The metric td density trend is useful in different ways. First, it is intuitive,
e.g., any value greater than zero means increase and any value less than zero
means decrease, and a value zero means no change in technical debt density.
Second, the above three value state of td density trend can be expressed with
three colors, which can be a good tool for effective communication among stake-
holders. Third, td density trend can be used to breakdown (componentize) other
metrics like we have done for ‘count of positive and negative td density trend in
Fig. 3, for td density in Fig. 5 and ‘mean of td density ’ in Fig. 6. The ability to
breakdown metrics into two (practically) groups or components is the most in-
teresting advantage of td density trend in our opinion. Moreover, the magnitude
of td density trend is also interesting as it tells us how quickly are we accruing
or repaying technical debt.
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6 Conclusions and Outlook

To study the evolution of technical debt this research paper has investigated the
use of ‘technical debt density trend’ metric and found interesting observations
how technical debt is accrued and repayment is made within the context of 4013
source files from 21 open source Java projects. In the context of this research,
technical debt is calculated with the SonarQube tool instrumented with 138 code
smells. It is observed that on average a file has maximum density of technical
debt when the file is only about 20 lines of code. Within the 20-50 ncloc, the
‘technical debt density’ is dramatically reduced followed by a moderate decrease
until 175 ncloc followed by a slight decrease until 350 ncloc. Within the 350-1000
range, the trend does not look much consistent but after 1000 ncloc a moderate
decline in ‘technical debt density’ is observed. The high density of technical debt
at the beginning of the file could possibly be a result of several factors such as
‘when writing a new code file, developers quickly start working without thinking
much about the quality’, ‘when the code size is very small, it is easy to read,
therefore, easy to maintain even though the ‘technical debt density’ is very high,
so, developers might not consider writing high quality code at the beginning’.

We discussed some characteristics of the ‘technical debt density trend’ met-
ric, i.e., its intuitive interpretation of the rise and fall of the density of technical
debt. We also discussed the possibility of the graph from ncloc and ‘technical
debt density trend’ to predict the density of technical debt. More importantly
‘technical debt density trend’ can be used to breakdown other metrics, meaning,
it would be possible to breakdown a metric into two components (one corre-
sponding to positive ‘technical debt density’ and the other to negative ‘technical
debt density’ ). Analysis of such components can be very useful to understand the
dynamics of increase and decrease of ‘technical debt density’ within the context
of a project, behavior of the developers or practices of an organization, which
we think is a novel contribution of this research.

Finally, we observed that the graphs between metrics ncloc and ‘technical
debt density trend’ and the graphs between metrics ncloc and ‘technical debt
density’ have very strong steep at the beginning which reduces as ncloc increases.
According to our past research experience, such observation is an effect of cu-
mulative measurement of ‘technical debt’ and ‘technical debt density’ metrics.
Since both of these two metrics are integral part of ‘technical debt’ evolution,
non-cumulative equivalents of these metrics should be used to investigate the
evolution of ‘technical debt’ in scenarios where cumulative metrics are problem-
atic. We consider this as an essential future direction for a better understanding
of ‘technical debt’ .
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