
COSMIC Sizing of Machine Learning Image Classifier

Software Using Neural Networks

Arlan Lesterhuis 1 and Alain Abran 2

1 COSMIC Measurement Practices Committee
2 École de Technologie Supérieure – ETS, University of Québec, Canada

lesterhuisa@kpnplanet.nl

alain.abran@etsmtl.ca

Abstract. Development of machine learning software has now penetrated a large

diversity of domains, in both academia and industry. From the initial realm of

research with a focus on innovation and creativity, its scaling up in industry re-

quires improved planning, monitoring and control of the development and imple-

mentation process. Such industry planning and monitoring is difficult without

relevant measurement techniques adapted to the problem at hand. This paper il-

lustrates how generic software functions can be extracted from machine learning

(ML) system requirements and their functional size measured in COSMIC func-

tion points - ISO 19761. An application of these concepts is presented using an

example of an ML image classifier software with a feedforward neural network.

Keywords: Machine learning, neural networks, COSMIC, function points, ISO

19761

1 Introduction

The development of machine learning (ML) software has now penetrated a large diver-

sity of domains both in academia and industry. From the initial realm of research with

a focus on innovation and creativity, the scaling up of ML software in industry requires

improved planning, monitoring and control of its development and implementation pro-

cess. Such industry planning and monitoring is difficult without relevant measurement

tools adapted to the problem at hand. While there is in the ML literature a large body

of knowledge on the mathematical aspects of the variety of ML algorithms and analysis

of their performance with various datasets, once implemented in software applications,

there is very little in the literature about the software itself that needs to be developed

in order to implement the ML algorithms in specific industry contexts.

Generally, the literature describes the ‘system viewpoint’ of ML, bundling together

all the tasks carried on by ML researchers, including the design of the ML system, its

coding, operation and data analysis. Considering that ML expertise is very specialized

and requires considerable expertise, while being in very high demand as well as in short

supply, it would be valuable to segregate the ML specific tasks from the software de-

velopment tasks for which expertise is more widely available and less specialized.

121Copyright © 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:lesterhuisa@kpnplanet.nl
mailto:alain.abran@etsmtl.ca

These coding tasks could then be delegated to staff with programming expertise,

thereby freeing up the ML software developers and data analysts, thereby allowing

them more freedom to address additional ML challenges. Of course, the prerequisite

for such delegation is that software tasks, such as specification of the functions allo-

cated to software be untangled from ML specific analytical tasks and well described

prior to delegation. This means that generic software functions be segregated from ML

specific functionalities. Success in this endeavor may allow parallelism of tasks in ML

projects, with the possibility of shortening their development cycle.

While it is expected that in every software there will be unique aspects making each

software distinct from any other, there are as well functionalities common and generic

throughout. This genericity is at the basis of software functional sizing measurement

methods such as COSMIC Function Points – ISO 19761. In this paper, the functional

principles underlying this COSMIC measurement method are used to address two ob-

jectives:

 segregation of the generic (classical) functionality to be allocated to software, and

not specific to ML;

 use of the international standard to size the generic functionality identified.

Success in both will facilitate delegating tasks to data analysts, as well collecting data

in a standardized fashion in order to develop estimation models for planning purpose,

and for on-going monitoring of the software tasks within an ML development project.

Section 2 presents overviews of machine learning and COSMIC function points.

Section 3 presents the system view of the ML image classifier case study used in this

paper, their generic functions allocated to software, followed by their measurement

with COSMIC function points. Section 4 presents a summary and suggestions for future

work.

2 Related work

2.1 Machine learning and neural networks

A neural network is an ML application that can ‘learn’ to classify input data with the

help of training examples of that input data. The example selected here from [1] is a

neural network to be trained to classify handwritten digits. The neural network can learn

to assign a handwritten digit, the desired digit, with an accuracy of over 97% depending

on the network.

During training each training example is input together with its desired value, the

latter being used to determine the error between desired and actual output. Through this

training, a cost (‘error’) function C of the neural network quantifies the average over

the error of all individual training examples in a mini batch. An example of such a

function is C(w, b) = (1/2n).∑x(y(x)−a(x))2, where n indicates the number of training

examples in a mini-batch, x is a training example, y(x) its desired output, a(x) its actual

output, while w and b represent the weights and biases in the hidden layers.

122

In the backpropagation algorithm the ‘overall error’ C(w, b) is reduced by systemat-

ically and repeatedly adapting the weights and biases so that the output a(x) from the

network approximates y(x) for all training inputs x: the neural network ‘learns’ [1,2].

Learning takes place on a basis of three sub-sets:

 the training set, used for training the network;

 the test set, for testing the result of training;

 the validation set, used to determine the values of the three ‘hyper parameters’ learn-

ing rate (indicated by η), the size of the mini-batches to be used and the number of

epochs of training.

The purpose of the backpropagating algorithm is to find a global minimum of function

C, or at least a minimum for which the error is acceptable for the purpose of the appli-

cation. In practice it is useful to experiment with the size of the changes of the weights

and biases supplied by the backpropagation algorithm. The size of the changes will then

be multiplied by a positive factor η (eta), the learning rate. To prevent overfitting a

regularization parameter (indicated by λ) is sometimes added.

2.2 Software functional size with COSMIC function points

Function points quantify the functional requirements of software and are used for vari-

ous purposes in software project management, including effort estimation, project plan-

ning, project monitoring, productivity studies and benchmarking [3-5]. In the COSMIC

functional size measurement method [3, 4] there are four types of data movements:

 entries and exits each move a data group in and out of the software, from/to func-

tional users.

 reads and writes each move a data group from/to persistent storage.

A data group is a set of attributes of interest to a functional user of the software being

measured, i.e. a ‘thing’ in the real world of the functional users about which the soft-

ware must enter, store, or output data.

The unit of measurement of the COSMIC FSM method is one data movement of one

data group, referred to as one COSMIC function point (CFP).

3 Case study: an ML image classifier of manuscript digits

3.1 System view: ML image classifier functions

Of a given file of images of separate individual handwritten digits each image must be

classified, i.e. assigned its correct digit. A file of randomly selected training images is

available, each image showing the handwritten digit and the corresponding digit it rep-

resents. An image of a digit consists of 28x28 pixels. The pixels are greyscale, with a

value of 0.0 representing white, a value of 1.0 representing black, and in between values

representing shades of grey.

On the basis of functional re-use of a pre-programmed feedforward neural network

algorithm, including its cost function, a neural network must be developed that can

123

learn to classify the images of the file. To initialize the network, it is therefore assumed

that specifying the numbers of layers and the numbers of weights and biases per layer

suffices. Also, to initialize the values of the weights and biases it suffices to specify the

mean and standard deviation.

Learning takes place on the basis of three sub-sets of the training images, called the

training set, the test set and the validation set. The training set is used for training, the

test set for testing the result of training. The validation set is used to determine the

values of the hyper parameters learning rate (indicated by η), the size of the mini

batches to be used and the number of epochs of training. The size of the mini batches

to be applied must be determined. All images are stored with their sub-set name (‘train-

ing’, ‘test’, or ‘validation’) for re-use.

The learning performance is monitored by printing and displaying the classification

accuracy and displaying the cost (error) per epoch of training. To detect overtraining,

two graphs are required, one displaying the accuracy per epoch, the other the cost per

epoch. The training set is enlarged by adding one elastically distorted copy of each

image in the training set.

For acceptance by the client the classification accuracy is required to be not less than

98%, verified on the basis of the test set. It must be possible to tune the network, i.e.

investigate the accuracy and speed by varying the main parameters of the network struc-

ture (the number of its layers, the number of units per layer and the hyper-parameters

to be applied).

3.2 Functional view of the requirements allocated to generic software

The functional users of the generic software to be measured from the system require-

ments in section 3.1 are (Fig. 1):

 the data analysts of the neural network, i.e. those who tune the network so as to meet

the accuracy requirement;

 the reused neural network algorithm (the feedforward algorithm in Figure 1): this

reused software does not have to be measured in this example; it is considered a

functional user rather than a software component to be measured.

Fig. 1. Context diagram of the generic software

For each image of separate individual handwritten digits, the image classifier software

(the generic and algorithm software) assigns and records its correct digit.

124

The context for this case study explicitly states that there is functional reuse of a pre-

programmed feedforward neural network algorithm, including its cost function. Con-

sequently, to create the feedforward neural network the data analyst needs only specify

a sequence of numbers in which:

 its length indicates the number of layers,

 each number indicates the number of units in its layer, and

 each unit in the hidden layers has one weight per input and one bias.

 The feedforward algorithm software receives the training parameters, including the

hyper parameters and then:

1. assigns random values to the weights and biases on the basis of the mean and stand-

ard deviation;

2. groups all training images randomly into mini batches, each consisting of a fixed

number of training images;

3. forward propagates the training images of a mini-batch and determines the average

cost (deviation, error) of the actual and desired output values of the training images

in the mini-batch;

4. backpropagates the changes, which the algorithm determines on the basis of the av-

erage error of the mini batch just processed, to all weights and biases backwards

through the layers in the network and stores the (updated) values;

5. processes all mini batches of training examples (finishing an epoch of training);

6. repeats steps 2) to 5) for the specified number training epochs.

It is assumed that the feedforward algorithm software stores the training session param-

eters so that it is possible to train anew with one or more changed parameters, other

parameters remaining the same. It also stores all the data needed to meet the require-

ments of the generic software.

Requirement 0 - Pre-processing. Images must be pre-processed. Note: since pre-pro-

cessing is specific to each context (and not described-specified in the above system

requirements), its measurement is not included in this case-study.

Requirement 1 - Initialization of the feedforward network architecture. The net-

work architecture is initialized by the parameters of the neural network architecture

specified by the data analyst.

Requirement 2 - Preparing training.

1. The software enlarges the training set by adding one distorted copy of each image

into the training set. The software receives the required expansion instruction from

the data analyst. In the absence of details on ‘expansion instruction’ an assumption

is made here that this will consist of a single data group. If in other cases there is

more in the ‘expansion instructions’, including more than one data group, this could

then lead to additional data movements since there would be more data groups.

2. The software receives from the data analyst the number of images for the three sets

of training, test and validation images, the members of which are randomly chosen;

all images must be stored with their sub-set name.

125

3. Determining the learning rate η. The software receives the training parameters to

produce the graph ‘Cost per epoch’ (with the validation images). By repeating train-

ing with different learning rates, the data analyst can determine a suitable value of

the learning rate η with the help of these graphs by comparing the rates of decrease

of cost (i.e. error) – Fig. 2.

Fig. 2. Cost per epoch

4. Determining a suitable number of epochs. For each execution of the training step

(with the validation images), the software must print the graph of Fig. 3.The data

analyst determines a suitable number of epochs with the help of the graph ‘Accuracy

per epoch’ by training with the validation images and differing numbers of epochs.

The analyst selects the smallest number of epochs with which the required accuracy

can be reached – Fig. 3.

5. Determining the mini-batch size. The data analyst determines the mini-batch size

from the graph in Fig. 4. The software receives from the data analyst the following

inputs to produce the graph – Fig. 4: a number of epochs, a plotting period in sec-

onds, and a number of intended mini-batch sizes.

For execution of the software in the training step (with the validation images), the soft-

ware must:

 read the classification accuracy per mini-batch size, and

 plot the four graphs of the classification accuracy of the mini-batch sizes versus time,

one by one, in one continuous run, i.e. without interruption or stopping.

Fig. 3. Accuracy per epoch

Fig. 4. Speed per mini-batch size

Requirement 3 - Training. The software receives from the data analyst the training

session parameters (mean, standard deviation, number of epochs, number of images per

mini batch, learning rate (η), regularization parameter (λ) and the sub-set name). During

126

training the number ‘classification accuracy per epoch’ and the corresponding elapsed

training time is printed to monitor the learning performance.

3.3 COSMIC size of the generic software

The measurement of the above functional processes using COSMIC function points and

the software data movements within each functional process are presented in Table 1

together with their FP Id, sizes in CFP, data movements (DM) and data groups.

Functional process 1 - FP1: Initialize the feedforward network architecture. The

software receives from the data analyst the parameters to create the feedforward archi-

tecture: a sequence of numbers the length of which indicates the number of layers and

each number indicates the number of units in the layer, and where each unit in the

hidden layers has one weight per input and one bias.

Functional process 2 – FP2: Expand the images. The data analyst inputs the required

expansion instruction, then this functional process copies each image, distorts it and

adds the result to the training set.

Functional process 3 – FP3: Divide images into 3 sub-sets. The data analyst inputs

the number of images within each set, then this functional process divides the images

into the three sub-sets of training, test and validation images, adds the sub-set name

attribute value to each image and stores the image data.

Functional process 4 – FP4: Display cost per epoch (Fig. 2). The data analyst re-

quests to display the graph of the cost (‘error’) of (the last mini batch of) each epoch.

Functional process 5 - FP5: Display classification accuracy per epoch (Fig. 3). The

data analyst requests to display the graph of the classification accuracy of the images.

Functional process 6 - FP6: Determine mini-batch size (Fig. 4). The data analyst

inputs a number of epochs and a number of mini-batch sizes to be examined and deter-

mines the desired mini-batch size visually on the basis of the graph. The software:

─ executes neural network algorithm with validation data,

─ graphically plots the last known epoch accuracy at each point of time.

Functional process 7 – FP7: Train the network. The data analyst inputs the training

session parameters (mean, standard deviation, number of epochs, mini-batch size,

learning rate η, regularization parameter λ) to train the network. For monitoring the

training, the epoch ID, number of correctly classified images, total number of images

and elapsed time must be printed.

The total functional size of the generic software is the sum of the sizes of its functional

processes FP1 to FP7, that is:

4 CFP + 4 CFP + 4 CFP + 6 CFP + 6 CFP + 10 CFP + 5 CFP = 39 CFP

127

Table 1. Functional Sizes of FP 1 to FP7 in CFP

FP Id

& size
DM Data group/ data attributes

FP 1

size = 4

CFP

Entry Number of units from data analyst

Exit Number of units to feedforward algorithm

Entry Result of initialization from feedforward algorithm

Exit Error/confirmation message to data analyst

FP 2

size = 4

CFP

Entry Expansion instruction

Read Image data

Write Training image

Exit Error/confirmation message

FP 3

size = 4

CFP

Entry Sub-set of images (sub-set name, number of images)

Read Image data

Write Image data with sub-set name

Exit Error/confirmation message

FP 4

size = 6

CFP

Entry Epoch ID range

Read Epoch ID, epoch cost stored by the feedforward algorithm

Exit Epoch ID (x-axis, multiples of 50)

Exit Cost (y-axis, multiples of 0,001)

Exit Epoch cost

Exit Error/confirmation message

FP 5

size = 6

CFP

Entry Epoch ID range

Read Epoch ID, epoch accuracy stored by feedforward algorithm

Exit Epoch ID (x-axis, multiples of 10)

Exit Epoch accuracy (multiples of 0.5%)

Exit Epoch ID, epoch accuracy

Exit Error/confirmation message

FP 6

size =

10 CFP

Entry Training session parameters (without number of images per mini batch)

Exit
Training session parameters (without no. of images per mini batch) to feedfor-

ward algorithm

Entry Mini-batch size, input the sizes to be compared

Exit Mini-batch size, sizes to be compared to feedforward algorithm

Read Elapsed time, epoch accuracy per mini-batch size stored by feedforward algo.

Exit Elapsed time (x-axis, in seconds)

Exit Epoch accuracy (y-axis: multiples of 20%)

Exit Mini-badge denotation from entry above

Exit Epoch accuracy per mini-batch size at point of time

Exit Error/confirmation message

FP 7

size = 5

CFP

Entry
Training session parameters (mean, std dev., number of epochs, no. of images

per mini batch, learning rate (η), regularization parameter (λ), sub-set name)

Exit Training session parameters to feedforward algorithm, sub-set name

Entry
Epoch ID, number of correctly classified images, total number of images,

elapsed time from feedforward algorithm

Exit Print epoch ID, no. correctly classified images, total no. images, elapsed time

Exit Error/confirmation message

128

4 Summary and future work

In this paper an ML image classifier case study was used to illustrate how to move

from a ‘system viewpoint’ of ML functionalities to the description of the generic soft-

ware development tasks for which expertise is more widely available and less special-

ized. Since these coding tasks can then be delegated to staff with programming exper-

tise, the ML experts can be freed up, allowing them more freedom to address additional

ML challenges. The case study illustrates how the generic software functionality has

been segregated from the ML specific functionalities. In this paper, the COSMIC func-

tion points technique was used to carry out the segregation. While it recognizes that in

every software there will be unique aspects making each software distinct from any

other, there are functionalities that are common and generic throughout. This genericity

is at the basis of software functional sizing measurement methods such as COSMIC

function points – ISO 19761, and has been used to address two objectives:

 segregation of the generic functionality to be allocated to software and not specific

to ML;

 use of the international standard to size the generic functionality identified.

Success in both facilitates delegating tasks to ML data analysts and software develop-

ers, as well as collecting data in a standardized fashion to develop estimation models

for planning purposes, and for on-going monitoring of the generic software tasks within

an ML development project. It is to be noted that success in this endeavor will allow

parallelism of tasks in ML projects, with the possibility of shortening their development

cycle.

Future work will include additional steps to verify the breadth and depth of the ge-

neric software functions described in the set of ML requirements used, identification of

ambiguities, and updates with corresponding size adjustments. Further validation will

include verification with actual ML software already developed by industry. Additional

empirical research work is also required to consolidate the insights developed in the

research reported here. In particular, additional case studies from other domains may

provide additional types and sources of generic functionality that could then be consid-

ered for scaling purposes.

References

1. Nielsen, M. A.: Neural networks and deep learning, Determination Press, available on

www.neuralnetworksanddeeplearning.com (2015).

2. Graupe, D.: Deep learning neural networks, World Scientific (2016).

3. COSMIC Group: The COSMIC Functional Size Measurement Method – Measurement Man-

ual, version 4.0.2, available on https://cosmic-sizing.org/publications/measurement-manual-

v4-0-2/, (2017).

4. Abran, A. and Dumke, R. (Eds.): COSMIC Function Points Theory and Advanced Practices,

CRC Press. ISBN 978-1-4398-4486-1 (2011).

5. Abran, A.: Software Metrics and Software Metrology, John Wiley & Sons and IEEE-CS

Press, New Jersey, p. 328 (2010).

129

file:///C:/Users/Arlan/AppData/Roaming/Microsoft/Word/neuralnetworksanddeeplearning.com

