
*Copyright © 2019

for this paper by its authors. Use permitted under Creative Commons License

Attribution

4.0 International (CC BY 4.0)

Harnessing the Complexity of Mobile

Network Data with Smart Monitoring*

Aleksandr Suleykin

1
 and Peter Panfilov

2

1V. A. Trapeznikov Institute of Control Sciences,

Russian Academy of Sciences, Moscow, Russia

aless.sull@mail.ru
2National Research University – Higher School of

Economics, Moscow, Russia

ppanfilov@hse.ru

Abstract. Mobile (cellular) networks represent a fast evolving research field

that take advantages of recent technological advances such as Big Data and

distributed computing to provide extensive network monitoring for network

operation planning and management purposes. Challenges related to making use

of the large volume of streaming data generated by mobile networks include

extracting relevant elements within massive amounts of signals possibly spread

across different sources (data bases), reducing dimensionality, summarizing

dynamic information in a comprehensible way and displaying it for

interpretation purposes. The adequate network modeling provides both

statistical data of network performance and important networking QoS related

insights. Comprehensible mobile network information is needed that uncovers

the role of each attribute and variable. To harness the complexity of mobile

network data and to extract relevant information a dedicated distributed

computing platforms and Big Data frameworks are needed, able to discover and

deal with the inherent properties and complexities of these datasets. Smart

network monitoring service plays a central role here.

Keywords: Smart Monitoring System · Cellular Networks · Distributed

Computing · Big Data · Dynamic Data-Driven Application System · Lambda

Architecture · DDSM · Roaming Users Detection and Monitoring.

 1

Introduction

 The number of smartphone users has already reached 4.61 billion users in 2016,

and upward trend is forecast for the market with 5.07 billion users by the end of 2019

[1]. The rapid growth of a mobile user count immutably leads to the proportional

increase of data being generated by mobile subscribers, user equipment, cellular

network nodes and mobile networks

as a whole. This is becoming more challenging

for mobile operators to handle constantly increasing data volumes for many different

protocols and mobile network interfaces using traditional solutions with standalone

systems, relational databases, many different formats of data storage and transmission.

 To address these new challenges a new approaches such as Big Data, Internet of

Things, Machine-to-Machine Communications, distributed computing platforms and

paradigms find its application to cellular network data storage, aggregation,

transformation, enhancement and transfer.

 Real cellular networks exploit multiple different

protocols for data transmission

and corresponding interfaces. Each node of the mobile network is communicating

with other node(s) and external environment according to the standard protocols such

as 3GPP [2] and ITU [3]. Every protocol has its own parameters, which are different

2

Fast circuit (real-time processing)

Slow circuit (batch processing)

Big Data real-
time data
collection

Vendor specific

Decision makers

Real System

Protocols
structure

Middleware

Cellular Network
Probes

Geo-
positioning

Data
collection

Data
enrichment

Real-time data
models

Roaming users
detection

Network
Troubleshoo-

ting issues

Case-specific
models

Other data sources

Base Station
characteristics

Data Lake

Case-specific
data

Big Data storage

Data
queries

Offline
Data

Analysis

Hypothesis
verification

Network
Operation

Network
Planning

Network
Engineering

Other data
consumers

Big Data real-
time data parsing

Data
parsing

application

Universal
output data

format

Offline data models

Geo
reports

Recomendations

Advertisment

External
environment

Additional
income

Fig. 1. The architectural overview of the DBDF – a concept

from one network element to another. The complexity and variety of data protocols,

very large volumes of data being transferred and importance of data have led to the

need of new approaches to the cellular network data monitoring and analysis, using

latest technology achievements such as Big Data and Machine Learning.

The smart monitoring system (SMS) vision relies on the use of ICT to efficiently

manage and maximize the utility of mobile network infrastructures in order to

improve the quality of service and network performance. Many aspects of SMS

projects are dynamic data driven application systems where data from sensors

monitoring the system state are used to drive computations that in turn can

dynamically adapt the monitoring process as the complex system evolves. In this

context, a research and development of a distributed Big Data driven framework for

cellular network monitoring data entails the ability to dynamically incorporate more

accurate information for mobile network controlling purposes through obtaining real-

time measurements from the network meters, base stations, and other sensors.

Traditional network monitoring services, exemplified by Netboss XT [4] a

sophisticated multipurpose telecommunication networks management system are

designed to monitor networks, detect failures and provide network maintenance and

performance analysis in an multi-vendor, multi-protocol, multi-service heterogeneous

environments. The major advantage of such a system is its flexibility – the system

comprises of hundreds of software intelligent agents that permit to manage the

equipment of almost any known vendor and interface with major OSSs. It also

provides an integrated development environment and programming language to create

new software agents or enhance existing ones.

However, traditional approaches face problems of handling increasing complexity

of network data because they do not scale well enough and are much slower when

compared to the modern high-performance data analytics (HPDA) and distributed

computing enabled solutions.

We propose a Distributed Big Data Driven Framework (DBDF) for cellular

network monitoring data on the basis of the Dynamic Data-Driven Application

System (DDDAS) paradigm [5] and a core concept of Lambda architecture [6-8],

specifically targeted at scalable and secure real-time Big Data application systems, the

comparison of different Big Data methods, techniques, and available tools. The

DBDF consists of different components that realize SMS paradigm for the cellular

network data in distributed Big Data driven fashion as it is presented in figure 1.

The new concept of DBDF for handling cellular network management and

operation problems is targeted at network management representatives and decision

makers in Mobile Engineering, Operating and Planning departments to help them in

managing complexity of the cellular network data in real-time on the basis of smart

network measurements, simulation and optimization models.

3

2 Distributed Computing and Big Data Issues

In fact, cellular network data is a streaming data coming from interfaces, base

stations, billing system and other sources and represent highly-loaded systems with

Gigabytes and Terabytes of data per second, even though this is a compressed data.

As such, the CN monitoring data need to be parsed and processed on a cluster of

computers with application of Big Data methods for processing of very large volumes

of data. Distributed data processing methods and techniques play an important role in

the whole CN data processing pipeline. All available and needed application systems

and methods should be adapted for high performance and fully distributed computing

environment and support scalable, reliable, and secure data processing. This is a key

requirement for dealing with complexity in modern CN infrastructures.

Distributed computing techniques have been widely used by data scientists before

the advent of Big Data concept. Thus, standard and time-consuming algorithms were

successfully replaced by their distributed versions with the aim of agilizing the

learning process. For many of current issues of Big Data, in particularly, in cellular

network operation characterized with large volumes of streaming data, a distributed

approach is becoming immutable nowadays.

The first distributed computing framework that enabled the processing of big

volumes of data was the MapReduce paradigm. This tool was aimed at easily handling

huge datasets in an automatic and distributed way using Map and Reduce task

concepts, that enable user with building a distributed and scalable applications while

hiding technical details as data partitioning, failure recovery or job communication.

However, MapReduce concept is not designed to scale well when dealing with

iterative and online processes, and usually deal with batch data tasks with relatively

huge latency comparing with online data processing. In our suggested architecture this

paradigm would be recommended for implementation in Batch layer for Big Data

storage system component.

Another group of methods is based on distributed in-memory computing, micro-

batch and real-time techniques. These methods are usually used for online Big Data

processing with millions of tuples per second per node performance. In our proposed

solution of the Smart Monitoring System architecture these methods are used in real-

time data transformation system component, in real-time data parsing component and

also might be used in a real-time data modeling component.

Message-driven applications are applications, that allow processing of future

messages that will arrive after subscription. The main advantage of such systems is

that many consumers can access the same data in independent way. Thus, a message-

driven approach is suggested to be used in Big Data real-time data collection to enable

many data consumers easily access cellular network data.

2.1 Lambda Architecture for Big Data

Building a reliable and efficient distributed Big Data application that satisfies a

variety of end-user requirements is a challenging task. Lambda Architecture (LA)

represents a useful framework for designing such applications. The appearance of the

LA concept was inspired by the following motivations:

 the need for a robust and fault-tolerant system, both against human mistakes

and hardware failures;

 the system should be linearly scalable scaling out rather than up;

 to serve a wide range of workloads and use cases, where low-latency reads

and updates are required, with support of ad-hoc queries;

 the system should be extensible and features should be added easily.

Essentially, the Lambda Architecture (LA) comprises of 3 main parts:

 Batch layer. This layer has two functions: manage the main append-only raw

data streams and pre-compute arbitrary query functions calling batch views.

In our DBDF architecture this is a so called “slow circuit” layer, where

cellular network data is coming from real-time data collection component

4

Fast circuit (real-time processing)

Slow circuit (batch processing)

Message-
Oriented

Middleware

Decision makers

Thrift data
format

Kafka

Network
monitoring
providers

TEOCO

NetScout

Astelia

Big Data (near)real-
time applications

Spark

Storm
Other data sources

In-Memory DBs

NoSQL DBs

SQL DBs

Big Data storage

Hadoop

Radio
Subsystem

CS and PS
Core

Marketing

Other data
consumers

Big Data driven
programming

languages

Java

Scala

Offline data models

Python

Airflow

External
environment

Advertisment
campaigns

Protocols
streaming

MAP

DIAMETER

SIP

IuPS

SIP

GTP

RTP

Others

Geo-reports

Hive

Fig. 2. Overview of the DBDF component architecture – an implementation

using batches.

 Speed layer. There are different fast and incremental algorithms which are

used with low latency. The speed layer deals only with the most recent data.

In the DBDF, these are key components that represent a “fast circuit”, and all

components inside this layer deal with online (real-time) data. Latency is a

major concern there.

 Serving layer. This layer indexes the batch views in Batch layer, and data can

be queried ad hoc with low latency. This layer is not included in current

DBDF implementation and will be considered as a future work aimed at

building DBDF Serving data layer [6-8].

3 Apache Spark and Lambda-enabled DBDF Architecture

Our implementation of the DBDF concept is based on Apache Spark open-source

platform which supports all ranges of Big Data formats like batch data, text data, real-

time streaming data, graphical data, etc. Apache Spark has already proved its huge

potential in the Big Data industry because of its in-memory data processing that

makes it high-speed data processing engine compare to Hadoop MapReduce.

Apache Spark provides a powerful data processing engine with development APIs

to allow data scientists to execute streaming conveniently. Streaming is unstructured

data that is generated continuously by thousands of data sources, including log files

generated by customers using mobile or web applications, in-game player activity,

information from social networks, financial trading and telemetry from connected

devices or instrumentation in data centers, IoT sensors, etc.

With Spark running on Apache Hadoop YARN, developers can now create

applications to consume and transform complex data streaming from Apache Kafka.

Complex transformations like exactly-once event-time aggregation can be expressed

using this API and the results can be output to a variety of systems. Apache Spark has

the inbuilt support of over 80 high-level operators and lets programmers write

applications using different programming languages as Python, Clojure, Scala or Java.

The low-latency in-memory data processing capability of Spark allows for

handling many data analytics challenges using its machine learning libraries and

graph analytics algorithms. With the help of Spark the CN providers can enable

themselves to analyze data coming from various kinds of data sources, because Spark

can easily process continuous streams of low-latency data. Thus, CN providers can

create real-time dashboards and explore data in real-time to monitor and optimize the

CN operation.

Figure 2 presents a high-level view of the Spark and Lambda-based

implementation of the DBDF for the smart processing and analysis of streaming data.

5

3.1 Real Cellular Network

Real CN consists of multiple network elements such as RNCs, BSs, NodeBs,

eNodeBs, MMEs, GGSNs, and other nodes receiving and sending data via different

cellular interfaces. Every new generation of mobile networks offers its own protocols

for data exchange and interfaces which adds to the overall complexity of the real CN.

The situation is aggravated by a variety of mobile device interfaces to cellular

networks. Typically, a mobile device has both an application processor and a cellular

processor, which each operate in different power states and data states. On most

mobile devices, applications use multiple forms of connectivity with multiple

transitions from one to the other. To manage connections to CN, the device itself

usually has multiple cellular data modes with different data rates and different power

usage. The cellular processor communicates with the CN in two different planes:

the control plane, which manages the communication protocol, and the data plane,

which carries the actual data packets representing different kinds of data – voice,

SMS, MMS, data itself.
To provide good quality of service to the mobile user, CN providers attempt to

deploy a CN that will never have its capacity exceeded. They can also be sensitive to

the behavior of mobile applications which possess features that, intentionally or not,

push the boundaries of the networks. As a result, carriers often need to restrict

application behavior to keep them within the limitations of the networks. For

example, a CN provider can limit the number of connections that an application

triggers, especially in the control plane.

In addition, network measurements might be accompanied with the base stations

characteristics, environmental (weather) condition data, and a mobile user’s demands

and/or complaints. These represent different attributes and properties of the real CN.

3.2 Cellular Network Events

Event-Driven network data are data records that appeared after specific network

event. It means that different data items should be created and transferred after some

event. Thus, these events might be presented as data communications between nodes

(transactions), data on the base station parameters, user complaints, etc.

Base station data records are the characteristics of base station such as their geo-

positioning, supportive technology, LAC code, Cells, address, vendor etc. User

complaints are complaint data records that are collected in connection to the particular

geographical location. Different transactions are data records that represent a part of a

subscriber session. The data in transactions are being transferred according to the

3GPP and ITU standards in predefined format – CN data exchange protocols.

3.3 Network Data Parsing

Big Data driven programming environment is a special purpose application capable of

processing huge volumes and streams of data (gigabit per second, Gbps) that parses

all highly compressed protocol data (depends on vendor format) to the one unified

data format, or processes data records received from real CN (BS parameters,

complaints). The data parsing is implemented via programming language, the choice

of which is highly important because different frameworks offer diverse functionality

and more adopted for some particular cases.

3.4 Message Oriented Middleware

Message-Oriented Middleware is the Continuous Streaming data storage with

predefined data structure according to different protocols. This is the middleware that

provides opportunity for many data consumers to get data in real-time as well as send

data for storage using batches. The issue here is that there might be many data

consumers, including internal mobile provider departments and external partners.

Actually, it hardly depends on the use cases – the more data use cases, the more data

6

consumers are. So the most important requirements for this layer is the capability of

handling extremely fast data streams, high reliability, scalability and support to many

different data consumers.

To meet requirements, it is proposed to use Apache Kafka messaging system as a

distributed streaming platform. In a large distributed system, there are usually a lot of

services that generate different events: logs, monitoring data, noticed attempts to

access secret resources, etc. On the other hand, there are services that need these data.

Kafka helps here as an interface between data producers and consumers: it collects

data from former, then stores it in a distributed store using topics and distributes it at

the latter via subscription. In other terms, Kafka is a hybrid of a distributed database

and message queue [13].

3.5 Offline Data Models

It is proposed to use Apache Storm or Apache Spark applications for data

transformations. Apache Storm is a free and open source distributed real-time

computing system that performs processing of data streams. It has many use cases:

continuous computation, ETL processes, real-time analytics, online machine learning

and others. Storm is fast: a benchmark tests show that it can process at over a million

tuples per second per node. It is fault-tolerant, scalable and simple to set up and

operate [14]. Apache Spark is a fast and general-purpose cluster computing system. It

has high-level APIs in Scala, Python, Java and R, optimized engine with support of

general execution graphs, higher-level tools such as Spark SQL for SQL and

structured data processing, GraphX for graph processing, Spark Streaming, MLlib for

machine learning [15].

Also, for offline data processing mode we propose to use Python programming

language for implementing machine learning and data mining algorithms. It has a

clear syntax, is well developed and documented [17].

For offline mode we also propose to use Apache Airflow for scheduling. It is a

library (or a set of libraries) for the development, planning and monitoring of work

processes. With the Airflow we can use Python for coding work processes. Hence,

there are advantages for organizing project and application development efforts.

Implementation is fairly simple. One can use, for example, PyCharm plus Git [17].

3.6 Other Data Sources

These are data sources within a CN, which are mainly used in the network simulation.

Usually, these data are collected and stored in data bases that are maintained by

different departments of the CN provider. It can be SQL-, NoSQL-based, in-memory

or other data structures, but the main concern is that data should be readily accesible

by real-time data models. Other data sources component in the DBDF is considered an

additional on-demand data source(s) for network simulation. In our previous work [9],

we used data from Base stations data base, user complaints data base and population

density data for the simulation and visualization of the so called “Problem Zones” in

CN. In general, the particular use case and different requirements dictate the selection

of the data bases and simulation tools.

3.7 Big Data Storage and Queries

This Big Data-driven layer in the general DBDF framework represents a component

responsible for protocols data storage, report generation, validation of hypotheses and

protocols data analysis. It can be done by using SQL queries to some database. Offline

storage is a component that realizes reliable and scalable data storage of cellular

network protocol data to be used in offline analysis, hypothesis validation and

different kinds of on-demand reports.

For data storage solution we propose to use Hadoop NoSQL data base. It is open-

source software for scalable, reliable, distributed computing, the framework that

allows the distributed processing of large data sets across clusters of computers using

7

simple programming models [18]. It is highly scalable solution specially designed to

scale up from the single servers to thousands of machines, where each server is

offering storage and computation. It is created to detect and come up with failures at

the application layer.

We propose to use Apache Hive for SQL queries to Hadoop. It supports analysis of

large data sets stored in Hadoop in HDFS and compatible file systems, such as the

Amazon S3 file system. Hive provides an SQL-like language called HiveQL with read

schemes and with transparent mapping of MapReduce, Apache Tez and Spark jobs.

All three execution engines run on Hadoop YARN. To speed up queries, it provides

indexes, including bitmap indexes [18].

3.8 Decision Layer

Decision support layer composes the output from Big Data models and reports. It

might be a streaming data in special predefined format, regular reports or triggered

data events after filtering. The decision layer is the environment specially designed for

Mobile Network Engineers, Planners, Operators, Managers and other data consumers.

It includes all applications needed to aid decision process on the basis of model output

data generated at previous stages of data pipeline. Decisions are made on the basis of

this data: detection and prioritization of problem zones in the network [9], planning

the network capacity and performance, base stations construction and deployment,

managing Radio network elements and other.

4 Experiments and Results

As a proof of DBDF concept, a near real-time Big Data based prototype application

for roaming users detection and monitoring was developed and tested using the real

cellular network data of one of the largest mobile providers in Russia.

Mobile providers are keen to keep track of their subscribers who go abroad or

migrate internally between regions. In fact, the significant percentage of all telecom

operator’s income is attributed to roaming users. Usually data usage, voice calls and

SMS delivery are more expensive when traveling in other countries and regions, and

telecom companies want to exploit solutions for detecting in real-time those users

migrating abroad or in other regions in order to offer them special services.

Thus, telecom companies usually require:

 the ability to obtain data about the geolocation of the subscriber in real time

for communication with the subscriber in Real-Time Marketing system,

 the ability to proactively detect the presence of blocking inconsistencies on

the side of billing systems and HLRs (Home Location Registered).

The prototype system was developed using Apache Spark application and the

Python programming language. The comparative analysis of the DBDF-based

prototype system with traditional standalone monitoring services in cellular network

was conducted to demonstrate benefits of the proposed framework such as scalability,

reliability, speed and performance, as well as it’s applicability to other similar use

cases and possibility to check new hypotheses. A prototype application of roaming

user detection and monitoring service demonstrated that Apache Spark streaming

provides less delay, less processing time and as a result more time for decision makers

in comparison to the traditional batch processing.

4.1 Experimental Setup

The prototype system was developed and executed on the basis of Apache Spark

application, which is the largest open source project in data processing [15]. Since its

release, Apache Spark, as the unified analytics engine, has seen rapid adoption by

enterprises across a wide range of industries. Internet powerhouses such as Netflix,

8

Yahoo, and eBay have deployed Spark at massive scale, collectively processing

multiple petabytes of data on clusters of over 8,000 nodes. It has quickly become the

largest open source community in Big Data, with over 1000 contributors from 250+

organizations [15-16].

For our experiments, the YARN was chosen as a resource manager for Apache

Spark. This manager is actually managing all cluster resources available for Spark

jobs, which means that the capacity and performance of application are limited by

resource manager YARN.

For messaging system, an Apache Kafka application was selected as a system with

strong performance that can handle more than 100 000 events per second [14].

All installations of Spark, YARN and other support applications were done by

Hortonworks (HDP version is 2.6.3.0-235).

Common configuration parameters are:

 Java version is 1.8.0_77 (Oracle Corporation);

 Scala version is 2.11.8;

 Operational system is Linux;

 Operational system version is 3.10.0-514.21.1.el7.x86_64.

The experiments were conducted on a powerful cluster. The characteristics of

cluster and YARN resources available for all Spark jobs that run on cluster are as

follows:

 3 nodes for YARN allocated;

 Memory allocated for all YARN containers on a node is 306Gb. Total

memory is 918 GB;

 Minimum Container Size (Memory) is 2048Mb;

 Maximum Container Size (Memory) is 100Gb;

 Number of virtual cores is 32;

 Percentage of physical CPU allocated for all containers on a node is 80%;

 Minimum Container Size (VCores) is 1;

 Maximum Container Size (VCores) is 32. VCores total is 96;

 1 second interval between jobs;

 2 Spark Executors selected on default.

4.2 Prototype Application Data and Code

Following to the specifications 3GPP and ITU, to analyze the subscribers relocation to

other countries and/or regions inside a country we have looked at MAP (Mobile

Application Part) protocol for 2G and 3G technologies (if user is currently using 2G

or 3G network), or Diameter for 4G generation. The following attributes of the data

would have been organized in messaging system entities (table 1):

Table 1. Filtered MAP and Diameter attributes.

Protocol Event type Filtered Attributes

MAP CancelLocation/UpdateLocation MSISDN

IMSI

VLR

Timestamp

SccpCallingDigits

SccpCalledDigits

MAP UpdateGPRSLocation MSISDN

IMSI

Back Calling Address

Timestamp

Diameter UpdateLocation/Cancel Location IMSI

MSISDN

OriginRealm

9

We have searched for Cancel location and Update location events only. From the

CN’s business logic perspective, we would be searching for the following events:

 start of another country visit;

 change of operator;

 change of country;

 return to country of origin;

 change of VLR (Visitor Location Registered).

The data streaming of MAP and Diameter protocols was organized using one of the

largest telecom company in Russia, and data were received in Kafka application in

thrift data format, during the job implementation converted in Json data format and

finally sent to another Kafka messaging system to topics according to event types

described above (table 1).

The average size of the streaming dataset is really challenging with an average

number of 37300 records per second for MAP protocol and an average number of

24200 records per second for Diameter protocol, for a data stream of 61500 records

per second in total.

To run the application it is necessary to have 3 files in the folder:

 startup script (run.sh is in the project in the ./src/main folder);

 main code implementation file (stream-1.0-SNAPSHOT-jar-with-

dependencies.jar);

 folder with configuration file.

The fragment of the main code of a prototype application is shown in Figure 4.

import scala.util.parsing.json_

import scala.collection.JavaConversions._

object Main extends Serializable {

def main(args: Array[String]): Unit = {

val sparkConf = new SparkConf()

sparkConf.set(“spark.streaming.stopGracefullyOnShutdown”,”tru

e”)

val sc = new SparkContext(sparkConf)

val prop = new StreamingContext(sc, Seconds(1))

val topicsSetGSM = prop.gsmmapTopicsSet

val topicsSetDia = prop.diameterTopicsSet

val kafkaParamsInGsm = prop.kafkaParamsIn.toMap + (

“key.deserializer” -> classOf[StringDeserializer],

“value.deserializer” -> classOf[GsmMapDecoder]

)

val kafkaParamsInDia = prop.kafkaParamsIn.toMap + (

“key.deserializer” -> classOf[StringDeserializer],

“value.deserializer” -> classOf[DiameterDecoder]

)

val metricsAccumulator =

MetricsAccumulator.getInstance(prop.elasticHosts,

prop.elasticIndexName, prop.elasticDateFormat)

val kS = KafkaUtils.createDirectStream[String,

TGsmMapRecord](

ssc,

PreferConsistent,

Subscribe[String, TGsmMapRecord](

topicsSetGsm, kafkaParamsInGsm)).

mapPartitions(part => {

part.map(_.value(()

Fig. 4. The fragment of Spark code.

10

Fig. 5. Result messages in Kafka application after Spark job implementation

As a result of Spark job implementation, the following results of YARN resources

are allocated for this particular Spark job:

 Allocated memory is 6144Mb;

 Allocated CPU VCores is 3;

 3 containers running;

 average Scheduling Delay is 14 ms;

 average Processing Time is 464 ms;

 total Delay is 478 ms.

The data can be viewed using Kafka UI tool (Fig. 5). It shows the messages in

topic. The result of the application is data streaming with fields as it is shown in

figure. Notice that IMSI and MSISDN fields that represent “private” information are

cut from the image, but the other informative fields are here.

The approach was validated by comparison of amount of filtered messages for

particular period. For this purpose, we were using code in Python to connect to Kafka

application and to take two regarded data streams – Map and Diameter protocols. We

analyzed the same period of time of messages in Kafka and filtered them using the

same rules that were used for Spark application. The amount of filtered messages

using Python code and Spark was equal.

4.3 Experimental Results

The comparison with traditional cellular network monitoring system and batch

processing of CN data shows the advantages of the prototype system based on Apache

Spark application.

The Spark streaming has many advantages comparing with usual batch streaming:

 average scheduling delay (ASD) for batch processing is much longer than

Spark delay. Apache Spark streaming runs its jobs with only 0.015 seconds

delay, while traditional batch processing has 0.5 seconds delay in average;

 average processing time (APT) shows that the same amount of data might be

processed in 45 seconds intervals, while Spark streaming process data in

0.464 time intervals. It is achieved because Spark jobs runs each second, and

the data processing is really fast, in-memory and efficient;

 average interval time (AIT) between Spark jobs is 1 second, while interval

between batch jobs is usually 1 minute. Batch processing cannot run faster

because of overheads before job start. Each start of job takes some additional

resources and needs some time to start job itself. For batch processing it is

larger than for streaming;

11

Fig. 6. The performance of the roaming users monitoring service implemented on the basis of

Apache Spark (red) and traditional batch processing (blue)

0
,5

0
0

0

4
5

,0
0

0
0

6
0

,0
0

0
0

1
3

,4
4

5
0

0
,0

1
4

0

0
,4

6
4

0

1
,0

0
0

0

1
4

,5
9

0
0

A S D , S E C S A P T , S E C S A I T , S E C S A A T , M I N S

Traditional system monitoring, batch processing

Apache Spark

 average available time (AAT) for decision makers to trigger roaming users. It

shows that time to make a decision about some action against “caught” users

is larger with Spark due to its faster computation comparing to the traditional

batch processing. Usually telecom providers are interested in users with no

more than 15 minutes delay when the event occurred that is the user crossed

the country border and this event has been caught by system. After we have

this event in messaging system, all the rest is depending on us – how fast we

process data and filter it for triggering and sending notifications. Thus, if we

consider average time between appearance of event in messaging system and

this event filtered - Spark shows only 1 second delay on average, while

traditional batch requires more than 1 minute and 15 seconds. It means that

decision makers can have more time to understand this user, his behavior and

to decide on sending any notifications.

The results of comparative study of the DBDF-based Spark streaming monitoring

versus traditional batch-based monitoring service can be described as follows (Fig. 6):

In total, a new DBDF framework has the following advantages over traditional

monitoring systems (Table 2):

Table 2. DBDF vs traditional monitoring system.

metric/system Traditional system monitoring DBDF

Scalability low high, not limited

Reliability low high

Speed and performance low high

Amount of possible use cases one
unlimited

Data access strict, within a department
non-strict, company wide

New hypothesis check N/A, not enough data

Easily, all monitoring data

12

Thus, all DBDF components are scalable, and with adding more compute nodes to

a cluster more performance gains can be obtained:

 storage and processing memory are scalable for all DBDF components that

represents a significant advantage over traditional standalone monitoring

systems. The parameter is important because of constant traffic growth

worldwide;

 reliability of the solution is supported by the fact that all data are replicated

in a cluster that makes framework reliable. In case of node failures the data is

not lost;

 speed and performance shows the huge difference. Because of the cluster

mode and in-memory computations, DBDF is processing data very fast,

while traditional standalone systems usually perform much slower;

 amount of possible use cases is not limited with DBDF – all monitoring data

are collected and stored, and many new use cases can be created and

discovered. In traditional system usually one system is covering one use

case, or one department. With DBDF, new use cases can be easily

implemented with all company departments based on processing rules

(online streaming) or new hypotheses validation (offline streaming);

 data access is usually strict in traditional monitoring systems, while with

DBDF all departments can have access to all monitoring data and achieve

synergy effect all together. It means that departments can work together for

new use cases adaptation and verification;

 new hypotheses checks are almost not possible with traditional systems

because of not all monitoring protocols are presented in place. In contrast,

DBDF open up new horizons with petabytes of data exploration.

5 Conclusion

To manage the complexity of the cellular network’s large volumes of streaming data it

is extremely important to deploy a powerful framework for data processing,

aggregation, enhancement, enrichment and storage. The adaptation of the distributed

Big Data driven framework for the smart monitoring services in telecom provider

environment and deployment of proposed architectural components will help to

achieve effective, reliable, scalable, high-speed and secure processing of the cellular

network data. The proposed DBDF framework is fully capable of dealing with high-

loaded CN data streams and can be considered a foundation for future models

creation, making sure that all data are reliably saved and not lost.

The proof of concept was achieved by creating a near real-time Big Data based

prototype application for roaming users detection with processing performance of

above 60 000 events per second. The prototype monitoring system has been created

using Apache Spark application and the adequacy of the model was checked by the

test application in Python programming language. The created prototype system has

revealed that Apache Spark is capable of handling thousands and even more events

per second and may be considered a foundation for real-time Big Data hub creation.

The comparisons of the prototype DBDF-based smart monitoring system with

traditional standalone monitoring systems in cellular network demonstrates many

benefits of the proposed framework such as its scalability, reliability, speed and

performance, possibility to check new hypotheses. Apache Spark streaming facility in

sample application for roaming user detection demonstrated less delay, less

processing time and more time for decision makers comparing with traditional batch

processing.

The implementation of the DBDF framework can be repeated for any telecom

operator using the same protocols, provided the cluster has the same performance to

maintain stable work of application. Or, the data stream can be also proportionally

decreased along with the amount of nodes in a cluster and their capacity.

As future developments of the DBDF for the cellular network data processing and

analysis we plan to develop, integrate and test a Serving layer of the Lambda-enabled

implementation of the smart monitoring system for the CN data.

13

References

1. https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide
(2017). Number of mobile phone users worldwide from 2013 to 2019 (in billions),
Accessed on: 2017-10-11.

2. http://www.3gpp.org/about-3gpp. Accessed on: 2018-01-31.

3. https://www.itu.int/en/itutelecom/Pages/default.aspx. Accessed on: 2018-01-31.

4. http://www.pictogramdesign.com/websites/nti_overview/docs/ServiceAssurance_OV_0826

10.pdf NetBoss Technologies Integrated Service Assurance. Pictogram Digital Design.

Accessed on: 2019-03-17.
5. Darema, F. (2004). Dynamic Data Driven Applications Systems: A New Paradigm for

Application Simulations and Measurements. International Conference on Computational
Science. M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 662–669, 2004. © Springer-
Verlag Berlin Heidelberg 2004.

6. Marz, Nathan and Warren, James (2015). Big Data: Principles and best practices of scalable
realtime data systems, 1st ed.. Manning Publication Co., 2015.

7. The Lambda architecture: principles for architecting realtime Big Data systems, blog post
by James Kinle. Available at: http://jameskinley.tumblr.com/post/37398560534/the-
lambda-architecture-principles-for Accessed on: 2018-02-05.

8. Lambda Architecture: A state-of-the-art, post by Pere Ferrera. Available at:
http://www.datasalt.com/2014/01/lambda-architecture-a-state-of-the-art/ Accessed on:
2018-02-05.

9. A. Suleykin, P. Panfilov (2017). The Simulation-Based Smart Management Approach for
Cellular Network Operation and Planning, in: Annals for DAAAM for 2017 & Proceedings,
DAAAM International, Viena, 2017, pp.0423-0432.

10. http://window.edu.ru/catalog/pdf2txt/503/80503/60870, p. 1-20. Accessed on: 2018-03-21.

11. https://kafka.apache.org/documentation.html#introduction. Kafka 1.0 Documentation.
Accessed on: 2018-02-04.

12. http://spark.apache.org. Apache Spark. Accessed on: 2018-02-04.

13. https://databricks.com/spark/about/. Accessed on: 2018-03-08.

14. https://kafka.apache.org/documentation.html#introduction. Kafka 1.0 Documentation.
Accessed on: 2018-02-04.

15. http://storm.apache.org. Apache Storm. Accessed on: 2018-02-04.

16. http://spark.apache.org. Apache Spark. Accessed on: 2018-02-04.

17. https://www.python.org/. Accessed on: 2018-03-08.

18. http://airflow.apache.org/. Accessed on: 2018-03-08

19. http://hadoop.apache.org. What Is Apache Hadoop? Accessed on: 2018-02-04.

20. http://libreportal.net/data-warehousing/apache-hive.html. Accessed on: 2018-03-07.

http://www.pictogramdesign.com/websites/nti_overview/docs/ServiceAssurance_OV_082610.pdf
http://www.pictogramdesign.com/websites/nti_overview/docs/ServiceAssurance_OV_082610.pdf
http://jameskinley.tumblr.com/post/37398560534/the-lambda-architecture-principles-for
http://jameskinley.tumblr.com/post/37398560534/the-lambda-architecture-principles-for
http://www.datasalt.com/2014/01/lambda-architecture-a-state-of-the-art/
http://window.edu.ru/catalog/pdf2txt/503/80503/60870

