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Abstract. The bug-fixing process requires software maintenance re-
sources. Usually, defects are submitted, fixed and closed, but sometimes
they have to be reopened because of a change of resolution. It happens
when a defect was evaluated incorrectly at the beginning. This problem
can increase maintenance costs and software quality in general.
In this paper, we investigate the characteristics of such defects and their
bug reports and call them “underestimated”. Our research is based on
general statistical indicators and text descriptions of defect reports. We
propose using different methods of feature selection and ranking in order
to reveal the significant terms of such defects. The top of significant
terms of the underestimated bug reports can help to find the root causes
of such life cycles.
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1 Introduction

Defect management is an essential part of improving the technical stability of
software. Usually, software companies use bug-tracking systems (BTS) in order
to manage defects. Structured information about defects is a big advantage of a
BTS, where a bug is represented as a set of attributes. Gathering data from bug
reports allows us to accumulate statistics, we also use these data for predictions
and analysis.

The knowledge of defect statistics and the defect management strategy helps
to create an effective approach to defect prevention because it can help to re-
duce bug migration into the later stages of development [17]. So, the accumulated
statistics of bug reports can reveal possible problem aspects. For example, re-
opened bugs belong to a problem area like this because they take considerably
longer to resolve [16]. However, for the purposes of this paper, we are investigat-
ing not just the reopened bugs, but also the defects which were once rejected,
considered a non-defect or non-fixable, and now having a “Done” or a “Fixed”

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

*



2 A. Gromova

resolution. It means that they could have been evaluated incorrectly, setting a
precedent for future misjudgments. Thus, they need to be analysed as a potential
problem of software development. In subsection 4.1, we demonstrate the calcula-
tions for several indicators, such as time to resolve, count of comments, priority,
etc. that prove this assumption.

We would also like to notice that our work is devoted to revealing the reasons
of underestimated defect reports more than their future classification. Our goal
is to understand the nature of such bug reports via the feature selection and
ranking methods. Thats why we mainly investigated the top list of terms.

We claim the following contribution in this work:

– We reveal special characteristics of underestimated bug reports.
– We propose using different methods of feature selection and ranking for

determining the most significant terms of underestimated bug reports.
– We conduct an analytical study to investigate the potential causes of the

initial resolution of such bug reports via the most significant terms.

The remainder of this paper is organized as follows: in Section 2, we present
an overview of the related work; in Section 3, we describe the structure of a defect
report; in Section 4, we outline the process of clustering. Further, in Section 5,
we present the results of the experimental evaluations of this technique; and
Section 6 lists our conclusions.

2 Related work

There are many researchers who deal with analysis of bug reports which have
certain specifics. They investigate the nature of these specifics, the root causes
of their occurrence and ways to predict them.

Zaineb and Manarvi analysed the reasons of bug rejection in order to de-
crease the possibility of submission of invalid bug reports [20]. They discovered
some causes of bug rejection and their impact on testing efficiency. Zimmer-
man et al. [21] propose to predict defect reopening. They analyse comments,
description, time to fix and the components describing the defects. Shihab et al.
also investigate the problem of reopened bug reports [16]. They used the deci-
sion tree in order to predict whether a bug will be reopened after its closure.
Karim et al [13]. investigated the key features of high-impact bug reports (HIB).
HIBs are defect reports which can significantly affect the software development
process and product quality. The researchers considered several types of HIBs
and discovered the most frequent features provided by submitters in such bugs.
These features include the observed behaviour, the expected behaviour and code
examples. Similar features were detected by Chaparro et al. [3]. They analysed
the observed behaviour, the expected behaviour and steps to reproduce and pro-
posed linear Support Vector Machines to classify the description of bug reports.
Their text classification is based on N-grams.

Gegick, Rotella and Xie proposed to classify bug reports into security and
non-security bug reports [7]. They analyzed the description of defects and created
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three lists: a start list (includes special terms from security bug reports), a stop
list (the classic list of stop words) and a synonym list (includes security-related
verbiage). In order to reduce the size of a term-by-document frequency matrix,
they used SVD. Peters et al. [15] also investigated security bug reports. They pro-
posed a “FARSEC” framework that is used for filtering and ranking bug reports
for reducing the presence of security-related keywords. The framework is also able
to identify and remove non-security bug reports with security-related keywords.
They compared several machine learning algorithms such as random forest, Naive
Bayes, logistic regression and multilayer perceptron. Goseva-Popstojanova and
Tyo also analysed the problem of security bugs as crucial for software quality,
but they used supervised and unsupervised approaches[8].

The problem of classifying issues into defects and non-defects is very popular
too. Antoniol et al. [1] analyzed text attributes of bug reports. They compared
the results of three classifiers: logistic regression, decision tree, and Naive Bayes.
So, the research helped to classify the issues and determine the discriminating
terms. Herzig et al. [11] investigated this problem as well. However, they esti-
mated misclassification, i.e. bias, in bug prediction models confusing bugs and
features. The researchers proposed manual data validation in order to improve
future studies. Terdchanakul et al. [18] also identified if the description of the
issue corresponds to a bug or not. They used N-grams for text classification and
built classification models with the logistic regression and the random forest
methods.

This review of the related work demonstrates the importance of understand-
ing the nature of different types of defects. The aforementioned researchers in-
vestigate various specific types of bugs and their potential life cycle stages. In our
work, we propose to consider the problem of underestimated defects as a special
case of the reopened bugs problem. In this paper, we investigate the submitted
bug reports which were reopened because, at some point, they were understood
and evaluated incorrectly. We aim to reveal the causes of such situations in order
to prevent them in the future and create possible recommendations.

3 Background

Each bug report has its own life cycle. A life cycle depends on the characteristics
of the software development cycle, the proprietary and the domain aspects of the
project. During the life cycle, a defect report's priority, status, etc. can change.

For this research, we only considered closed and resolved defects because only
such bugs have the values of Resolution, Time to resolve, Count of attachments,
Count of comments, etc., known for a fact. For the defects that have not been
closed or resolved, the values of these attributes are indefinite. We selected the
defects where Resolution has such values as “Done” or “Fixed” because they look
as ordinary. But then, we split them into two categories. The first category —
called “type 1” — includes bug reports that have never been reopened because of
a change of resolution. It means that they have never been rejected or considered
a non-defect or non-fixable. The second category — called “type 2” — includes
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the defect reports that had an alternative resolution before they got a “Done”
or a “Fixed” resolution. These alternative resolutions could have such values as
“Rejected”, “Won't Fix”, “Not defect”. In this paper, we called the bug reports
of type 2 “underestimated”.

We propose to compare the two types according to the following metrics:

– time to resolve as an indicator of how expensive the defect report is [12],
– count of comments and count of attachments because their abundance can

be an indicator of an insufficient defect description [12],
– percentage of “Critical” and “Blocker” priority ,
– the length of description.

Thanks to this comparison, we can reveal the distinguishing characteristics
of underestimated defect reports.

4 Approach

4.1 Objects

We extracted 45,341 bug reports from three different project communities on
JIRA, a popular bug-tracking system. They include open-source projects of
JBOSS [22], Jenkins [23] and Sakai [24]. The comparative analysis of defect
reports of both types for all projects is presented in Table 1.

As Table 1 shows, defect reports of type 2 have distinctive characteristics. The
bugs of type 2 require more time for fixing than the bugs of type 1. They also have
a larger number of collateral comments and attachments. These characteristics
may be suitable for reopened defects or may not be suitable, such as in the case
of trivial reasons of reopening like addition of labels. So we prove that defects
of type 2 are “expensive-to-resolve” since they require a lot of human input and
time. Therefore it is important to investigate and prevent them.

According to Table 1, defect reports of type 2 have “Blocker” to “Critical”
priorities, just like type 1. It means that underestimated defects are important
because they can lead to a situation when a Critical or a Blocker bug can persist
in the system for a long time and undermine software quality.

The comparison of description lengths shows that the description of bugs of
type 2 is more complicated than “scarce text”. It means that they can have a
detailed description, but, for some reasons, it was evaluated incorrectly.

We propose to analyse the description of bug reports as a source of answers
as to why these defects became underestimated.

4.2 Text preprocessing

The description of defect reports is in text format, so it needs to be transformed
via natural language processing methodologies. We made the following steps:

– tokenization that chops the text into words,
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Table 1. Defect reports information

JBOSS Jenkins Sakai

Number of considered bugs 11,965 14,430 18,946

Number of type 1 11,848 14,280 18,763

Resolution of type 2
Won’t Fix,
Reject

Won’t Fix,
Not a defect

Won’t Fix,
Non-issue

Number of type 2 117 150 183

Time to resolve of type 1:
min / max/ mean

0 / 3086 /
52.619

0 / 3762 /
180.142

0 / 3486 /
86.898

Time to resolve of type 2:
min / max/ mean

0 / 1847 /
93.394

0 / 2791 /
367.353

0 / 4708 /
378.525

Count of comments of type 1:
min / max/ mean

0 / 92 /
2.772

0 / 174 /
5.665

0 / 80 /
4.426

Count of comments of type 2:
min / max/ mean

0 / 35 /
4.324

1 / 127 /
14.7

1 / 66 /
8.749

Count of attachments of type 1:
min / max/ mean

0 / 22 /
0.324

0 / 20 /
0.415

0 / 47 /
0.639

Count of attachments of type 2:
min / max/ mean

0 / 8 /
0.451

0 / 23 /
1.247

0 / 13 /
0.836

Percentage of Blocker /
Critical of type 1

7 % / 12% 9 % / 12% 10 % / 13%

Percentage of Blocker /
Critical of type 2

4 % / 8% 12 % / 13% 6 % / 16%

Mean description length
of type 1

4982.13 2082.092 971.113

Mean description length
of type 2

6669.768 2550.617 726.328
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– removal of stop-words list that was expanded with names of months, week
days, the submitter and assignee's names, parts of logs, stack traces, etc.,

– stemming that maps related words to their basic form and helps to reduce
the inflectional forms.

Then, we built a “Bag of words” model. This vector model takes into account
the number of occurrences of each term, rather than the exact order of the terms.
Every bug report is presented as a vector of n terms. A set of bugs is presented
as corpora or matrix n ×m where n is the number of all terms, and m is the
number of all documents. If a term occurs in the bug-report, its value in the
vector is non-zero. We used TF-IDF weighting for computing these values [14].

TFIDF = TF (t, d) · IDF (t,D) (1)

TF (t, d) =
freq(t, d)

maxw∈dfreq(w, d)
(2)

IDF (t,D) = log2(
|D|

d ∈ D : t ∈ D
) (3)

Where freq(t,d) is term frequency, i.e. the number of times that term t oc-
curs in documentd ; maxw∈dfreq(w, d) is the maximal frequency of any term in
document d ; d ∈ D : t ∈ D is the number of documents containing t ; D is the
corpus - the total document set [14].

4.3 Proposed techniques

We used the following methods of feature selection and ranking:
1) Chi-Squared is the common statistical test that measures the divergence

from the expected distribution, if one assumes that feature occurrence is actually
independent of the class value [5].

2) Recursive feature elimination (RFE) is a recursive process that ranks
features according to some measure of their importance [10]. At each iteration,
the importance of each feature is measured, and the least relevant one is removed.
The recursion is needed because, for some measures, the relative importance of
each feature can change substantially when it's evaluated against a different
subset of features during the stepwise elimination process. In this work, the
feature ranking method is based on the measure of the variables' importance
given by SVM [4].

3) Random forest is a method that builds an ensemble model of decision trees
from random subsets of features and bagged samples of the training data [2].
Each tree grows on an independent bootstrap sample from the training data. For
each node, it is necessary to select m variables at random out of all M possible
variables (independently for each node) and find the best split on the selected m
variables. Random forest classifiers can reveal feature importance, determining
how much each feature contributes to class prediction [19].
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4) Logistic regression is a classifier where the dependent variable is dichoto-
mous (binary). The logistic regression model is as follows:

π(x1, . . . xn) =
eβ0+β1∗x1+...+βn∗xn

1 + eβ0+β1∗x1+...+βn∗xn
(4)

Where xi are the characteristics describing the model, π ∈ [0; 1] is a value
on the logistic regression curve [6]. A regression coefficient describes the size
and direction of the relationship between a predictor and the response variable.
Positive coefficients make the event more likely and negative coefficients make
the event less likely. A coefficient with a value near 0 implies that the effect of
the predictor is small.

5 Results

In the original bug report dataset, we marked bugs as 0 if they belong to type
1 and 1 if they belong to type 2. We matched each indexed defect report with
its class {0, 1}. This column was used by the feature selection and ranking
techniques.

We built the top of the most significant terms with the aforementioned fea-
ture selection and ranking techniques that include chi-square, recursive feature
elimination, features importance of random forest and coefficients of logistic re-
gression. The top 15 of the most significant terms of JBOSS, Jenkins and Sakai
projects is presented in Tables 2, 3, and 4.

Table 2. The top of significant terms of JBOSS

Chi2 RFE Random Forest Logistic regression

'cast',
'materi',
'osgi',
'busi',
'constructor',
'bundl',
'vdb',
'network',
'comment',
'request',
'jar',
'spec',
'lookup',
'redirect',
'lot'

'busi',
'capabl',
'connector',
'consequ',
'day',
'determin',
'download',
'end',
'facet',
'includ',
'later',
'long',
'network',
'osgi',
'perform'

'import',
'color',
'normal',
'classexternallink',
'lineheight',
'condit',
'fonttyl',
'error',
'file',
'event',
'like',
'comment',
'fonteight',
'properti',
'consol',

'cast',
'request',
'event',
'jar',
'bundl',
'error',
'busi',
'osgi',
'open',
'materi',
'comment',
'constructor',
'connect',
'server',
'vdb'

Having analysed the received results, we propose to split them into the fol-
lowing groups of terms:
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Table 3. The top of significant terms of Jenkins

Chi2 RFE Random Forest Logistic regression

'stdout',
'ssl',
'dynam',
'testsuit',
'password',
'wrapper',
'certif',
'stderr',
'git',
'larg',
'emailtext',
'perforc',
'upstream',
'setup',
'gitssh'

'avoid',
'capac',
'correspond',
'detect',
'ensur',
'general',
'head',
'increment',
'introduc',
'jdk',
'listen',
'previous',
'provis',
'servic',
'strang'

'job',
'build',
'error',
'configur',
'password',
'run',
'use',
'document',
'need',
'testsuit',
'jenkin',
'log',
'poll',
'follow',
'long'

'git',
'server',
'password',
'stdout',
'error',
'setup',
'copi',
'document',
'perforc',
'dynam',
'upstream',
'way',
'avail',
'findbug',
'log'

Table 4. The top of significant terms of Sakai

Chi2 RFE Random Forest Logistic regression

'recommend',
'desir',
'idea',
'addit',
'retract',
'exit',
'pool',
'random',
'uniqu',
'person',
'app',
'font',
'portfolio',
'audio',
'edit'

'administr',
'app',
'applic',
'breadcrumb',
'exit',
'explicit',
'role',
'process',
'recommend',
'retract',
'situat',
'stay',
'trunk',
'write',
'uniqu'

'user',
'tool',
'appear',
'error',
'recommend',
'question',
'use',
'classexternallink',
'make',
'chang',
'info',
'click',
'screen',
'follow',
'list'

'recommend',
'appear',
'addit',
'edit',
'resourc',
'call',
'desir',
'pool',
'mean',
'entri',
'inform',
'idea',
'gradebook',
'creat',
'requir'
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1) “Prejudiced term” are the terms that are connected with biased wording in
the software bug description. The text seems to be full of subjective assessment
or personal impression of the submitter. So the defect report may be considered
a “fancy” or just a wild guess. Examples of such terms are: idea, recommend,
desir, larg, strange, long, comment, etc. Below are some samples of use of these
terms extracted from the defect reports under analysis:
I think the idea is to . . .
I recommend . . .
it would be more desirable . . .
unprofessional comments . . .
goes through after long time . . .
large logfile . . .
there is something strange with . . .

It is very important to isolate such terms and avoid them in the future defects
because they obscure the facts with subjectivity and increase the likelihood of
preserving a bug with a high or even critical and/or blocker priority in the
system.

Some terms may seem as standard forms of politeness. But sometimes a
bug report is overloaded with such “terms of politeness”, which can divert the
developers focus from the software problem itself.

2) “False friend” terms are the terms that might seem useful and look organic
in a technical text, but, surprisingly, in the context of defect reports, they can
decrease the transparency and make the meaning ambiguous. The examples of
such terms are: error, perform, appear, document, configur, etc. Some samples of
use of these terms extracted from the defect reports under analysis are presented
in Table 5.

Table 5. The terms of the second group

Example of use of these terms Clarification

The documentation claims that . . .
Ambiguous interpretation of “documentation”
leads to a misunderstanding between the
developer and the submitter.

Add the name again and continue
but the name does not appear . . .

The lack of details about “non-appearance”
makes the bug non-reproducible.

When trying to perform operation,
the exception is thrown . . .

The lack of details about what is being
performed can confuse the developer.

Some plugins fail to startup with
the following error . . .

The absence of conditions and details leads to a
biased assessment of the root cause.

This group of terms is especially dangerous. The submitter describing a soft-
ware defect uses these terms and overlooks the details because he or she thinks
that the description is comprehensive.
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3) Domain-related terms. Examples of such terms are: osgi, gitssh, retract,
gradebook, bundl, etc. Knowing them is very useful because it gives an oppor-
tunity to reveal potential areas of testing [9] where defect reports have a high
probability of being underestimated.

It is important to mention that these groups of terms can overlap. It means
that some areas of testing can be rather complicated, and there are more pos-
sible cases for misunderstanding and underestimating a potential problem. For
example, the submitter describes user actions which are connected to one of the
areas of testing. He or she notices errors or exceptions. However, due to the
complexity of the area of testing and the fact that some necessary details are
missing, it is difficult for a developer to understand the cause of these results:
it is not obvious whether it is a possible defect or just an erroneous chain of
submitter's actions.

We have compared the methods of feature selection and ranking and noticed
that chi-square is prone to place the “prejudiced” terms at the top, and the
feature ranking by random forests is prone to place the “false friend” terms at
the top. So they can be useful for revealing the words that can create a situation
where some facts or details are omitted.

We also compared the methods of feature selection and ranking in order to
check their accuracy. We used the cross-validation technique for this task. The
received results are presented in Table 6. We discovered that the cases without
feature selection have lower accuracy values than others. According to Table 6,
Random Forest has the highest accuracy.

Table 6. The accuracy comparison

Project

Without
using
feature selection
methods

Chi2 RFE
Random
Forest

Logistic
Regression

JBOSS 0.8 0.82 0.81 0.96 0.88

Jenkins 0.77 0.83 0.82 0.98 0.88

Sakai 0.69 0.7 0.77 0.96 0.87

6 Conclusion

This paper is devoted to the problem of underestimated bug reports. These
are reports where the resolution of the described defect was changed from a
potentially incorrect one, such as “Reject”, “Not a defect”, etc., to an ordinary
one of “Done” or “Fixed”.

We have revealed the specifics of such bug reports. They are long to resolve
and have a large number of collateral comments and attachments. They can be
considered as potentially problematic bugs, i.e. the defects that require human
and time resources.
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We have proposed several methods of feature selection and ranking in order
to build the top of the most significant terms. We used chi-square, recursive
feature elimination, features importance of random forest and coefficients of
logistic regression.

We compared different methods of feature selection. We found out that the
cases without feature selection have lower accuracy values than others and Ran-
dom Forest has the highest accuracy among the methods.

We have analysed the received tops of terms and proposed to split them
into three groups. The first group - “prejudiced” terms - includes terms with
subjective assessment. The second group - “false friend” terms - consists of terms
with a potentially dangerous lack of details. The third group - domain-related
terms - includes terms associated with an area of testing. The analysis of these
groups can help understand the key problems of underestimated defects as well
as prevent them from occurring.

In the nearest future, we plan to analyse each potentially problematic res-
olution separately. We also plan to compare underestimated bug reports with
defects that have the final resolution of “Rejected”, “Won't Fix”, etc. It can
provide a better picture of the specifics of such defect reports. Consequently,
it can help to generate recommendations in order to reduce the occurrence of
underestimated bugs.
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