
An Architecture to Discover and Query

Decentralized RDF Data

Uldis Bojārs1 and Alexandre Passant2 and Frederick Giasson3 and John Breslin1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
[uldis.bojars, john.breslin]@deri.org

2 Université Paris IV Sorbonne, Laboratoire LaLICC, Paris, France
alexandre.passant@paris4.sorbonne.fr

3 Zitgist LLC., Quebec City, Canada
fred@fgiasson.com

Abstract. In this paper we describe a distributed architecture consisting
of a combination of scripting tools that interact with each other in order
to help to find and query decentralized RDF data. Thanks to this architec-
ture, anyone can participate in the collaborative discovery of Semantic Web
documents by simply browsing the web. This system is useful for dynamic
discovery of RDF content and can provide a useful source of RDF documents
for other Semantic Web applications. Key components of this architecture
are the Semantic Radar plugin used for discovery of Semantic Web data,
Ping The Semantic Web service for aggregating locations of RDF data, and
services using RDF data illustrated here with the example of doap:store.

1 Introduction

As the Semantic Web meme is spreading the number of RDF documents available on
the Web is constantly growing and so is the number of tools creating and using this
information. People create their FOAF4 profiles, developers describe open-source
projects using DOAP5, and bloggers and bulletin boards provide data from their
sites using SIOC6 [4]. Semantic Web search engines such as Swoogle [6] and SWSE
[10] have been developed to help to find this information, and browsers such as
Tabulator [2] or Disco7 can help to navigate through the Semantic Web.

The amount of documents indexed by Swoogle has reached more than 1.4 million
but that is a small amount compared to the size of the Web estimated to be more
than 11.5 billion documents [8]; the density of these RDF documents on the Web is
still low and finding them can be a hard and laborious task. Moreover, an area which
these search engines currently do not address is dynamic content, since information
on dynamic websites such as blogs and online community sites is being generated
at a fast pace. To adapt to this new trend, a new kind of infrastructure is necessary
to enable Semantic Web applications to quickly harvest and use this information.

We present a scripting architecture that aims to solve this problem of finding
and querying up-to-date decentralized RDF data, in almost real-time. Our goal is to
show how simple scripting applications can work together to provide an extensible
architecture for applications browsing and querying Semantic Web documents.

The rest of this paper is organized as follows. Section 2 describes our approach
and its key features - decentralized scripting and user participation in discovery of
Semantic Web data. Similar to the idea of Web 2.0 where tools and interfaces are

4 http://foaf-project.org/
5 http://usefulinc.com/doap/
6 http://sioc-project.org/
7 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/



driven by users the collaborative discovery provides a way to let everyone be part of
this architecture. In section 3 we describe the complete architecture of the system
consisting of the following components: (1) Semantic Radar, a browser extension
used to detect presence of Semantic Web content while browsing the web, (2) Ping
The Semantic Web (PTSW), a service for aggregating notifications about recently
discovered and updated Semantic Web documents and (3) external services such as
doap:store that use these data sources to provide browsing and querying interfaces.
Finally, we will present a preliminary evaluation of our approach, introduce related
work and conclude the paper by presenting some of the future work.

2 Our approach

A decentralized system. Using the philosophy of Unix programming, we decided
to work on a set of small scripting application that each focus on a single job and try
to do it as good as possible rather that working on a new centralized architecture.
Thus, the system can be seen as a synergy of applications and web services assembled
together in a ”semantic pipeline”: one tool will concentrate on finding documents,
another on storing their URIs and providing them to consumers of RDF data, while
the third will provide RDF query and browsing interfaces.

User participation. The other characteristic that differentiates this system from
services such as Swoogle, is that it strongly involves user participation in the way we
discover new Semantic Web documents. No preliminary knowledge of RDF or user
effort is required, since users just have to browse the Web to be part of this discovery,
as we will see in section 3.2. Thus, real users are involved in this architecture of
participation and can help to discover the ”invisible” Semantic Web.

Data provider. The centric point of our approach is the way to provide found
data to users. Using previous discovery of Semantic Web content, but also pinged
by other services such as TalkDigger8, Ping The Semantic Web maintains a list of
RDF documents URIs which is constantly updated, acts as a data provider and can
be the entry point of a lot of services, as it provides fresh Semantic Web data.

Browsing and querying services. Using the list of URIs maintained by our
data provider, external services that browse or query RDF data can be plugged to
this architecture. The first implemented service of this kind is doap:store, a search
engine dedicated to DOAP projects, described in detail in section 3.4, while other
already existing services as SWSE are also using it.

3 Architecture of the System

Our system involves the following components (see Fig. 1):

– Data sources, i.e. RDF documents spread around the Semantic Web, created by
people themselves or by some of the tools they are using as SIOC exporters9;

– Semantic Radar10, a Firefox plugin that allows anyone to be part of the dis-
covering of Semantic Web documents by simply browsing the Web, using auto-
discovery links to find RDF data from HTML pages;

– Ping The Semantic Web11 (PTSW), a web service that stores a list of RDF
document URLs it receives pings about, mainly via the Semantic Radar but
also thanks to other services;

8 http://talkdigger.com
9 http://sioc-project.org/exporters

10 http://sioc-project.org/firefox
11 http://pingthesemanticweb.com



– Browsing and querying services, that use the list of documents URIs stored
within PTSW, as doap:store12 to query and browse DOAP projects or SWSE
search engine.

Fig. 1: Global architecture of the system

3.1 Data Sources and RDF Auto-discovery

The starting point of our architecture is RDF data sources that we need to discover.
That includes all the RDF information published by people or information systems
that they are using. Examples of RDF information on the web include SIOC, FOAF
and DOAP data. An important question is how to detect links to RDF information
from any web page.

RDF/XML Syntax Specification [1] recommends to use a <link> element in in
the <head> element of HTML pages to point to additional RDF documents instead
of directly embedding RDF/XML content in web pages, which may cause validation
against DTD to fail, unless using RDFa or other embedded RDF approach. To use
this technique the href element should point to the URI of RDF/XML content and
the type attribute should contain the value "application/rdf+xml".

<link rel="alternate"

type="application/rdf+xml" title="RSS 1.0"

href="http://apassant.net/blog/feed/rdf" />

This linking technique is known as RDF auto-discovery and is recommended and
used by a number of Semantic Web projects and vocabulary specifications, such as

12 http://doapstore.org



DOAP, FOAF13, ICRA14 and SIOC. The same technique with different MIME types
is also widely used to point to RSS and Atom feeds. It offers automatic discovery
of machine-processable information associated with webpages and applications are
aware of that. I.e., web browsers use RSS auto-discovery links to display an RSS
icon and to read or subscribe to RSS feeds associated with webpages.

By adding a link to FOAF profile a person enables visitors of the website to dis-
cover machine-readable FOAF data using web browser extensions such as Semantic
Radar introduced in the next section. Data export tools such as WordPress SIOC
plugin15 use RDF auto-discovery links to facilitate discovery of the information they
create.

It is its ease of understanding and implementing that makes RDF auto-discovery
a popular choice for indicating presence of RDF data or any other metadata related
to a web page.

3.2 Semantic Radar extension for Firefox

Semantic Radar is a Firefox browser extension (written in XUL and JavaScript)
which inspects web pages for RDF auto-discovery links and informs a user about
presence of them by showing icons in the browser’s status bar.

When an auto-discovery link is detected, Semantic Radar examines the title

attribute of the link tag. It uses this attribute as a hint - and only a hint, since it
is designed for humans - and if its content matches a pattern associated with one
of the data types the application is built to detect, it displays the corresponding
icon. Currently supported data types are FOAF, SIOC and DOAP and the patterns
used to detect them using the title attribute are simply ”FOAF”, ”SIOC” and
”DOAP”.

This function makes users aware of the invisible Semantic Web that is part of
web pages they are exploring every day. An important aspect of the tool is that it is
not limited to a particular ontology (there were separate tools for detecting FOAF
or other ontologies before that) but provides a generic way to detect various types
of documents related to auto-discovery links and can be extended to cover more
types of data in the future.

Semantic Radar allows users to click an icon and see this data in a user-friendly
RDF browsing interface making it better understandable for human users. As such
it can play a role in education and outreach of the Semantic Web to classic Web
users and developers. By installing a simple browser plugin users can see what
Semantic Web documents are associated with webpages and can explore this infor-
mation without a need to look at raw RDF data. This is the first motivation for
users to install this extension. E.g., when browsing a weblog that links to author’s
FOAF profile a user can get additional information about the author and his social
relations.

The second function of Semantic Radar - ”pinging” or sending notifications - is
an important part of our architecture for collaborative discovery of Semantic Web
data. Whenever a RDF auto-discovery link is discovered by the application it sends
a ”ping” to PTSW service - described in the next section - which collects and aggre-
gates these notifications. As a result, users are building a ”map” of Semantic Web
documents, once again without additional effort. This provides a second motivation
to install the plugin.

The ping function of Semantic Radar can be switched off at any time by clicking
the radar icon in the status bar or via extension preferences thus addressing possible

13 http://rdfweb.org/topic/Autodiscovery
14 http://www.icra.org/systemspecification/#specificLink
15 http://sioc-project.org/wordpress



Fig. 2: Overview of Semantic Radar

privacy questions. Additional safe-guards are provided by creating a ”black-list” of
URLs that pings will not be sent about, i.e., when browsing intranet pages.

Joint work of the users browsing the web using Semantic Radar extension and
of PTSW service makes collaborative discovery of RDF documents possible. An
important characteristic of this process is that the pings are generated by real
users. Brin [5] uses an intuitive model of random walkers on the web to explain
Google PageRank (the probability of a ”random walker” visiting a web page is
its PageRank). In collaborative discovery of information there are real ”walkers”
browsing the information that we can assume they are interested in. Thus the ping
summary directly indicate not only presence of pages but also how popular they
are.

3.3 Ping The Semantic Web Service

Ping The Semantic Web (PTSW) is a web service that acts as a multiplexer for RDF
document notifications. It collects and archives notifications about recently updated
or created RDF documents and HTML documents with RDF auto-discovery links,
and provides an up-to-date list of Semantic Web documents to services (e.g., web
crawlers, software agents) that request it. Similar web services are already widely
used for aggregating changes to web feeds, with weblogs.com processing millions
of pings each day. PTSW is dedicated to Semantic Web documents and all the
sources they may come from: blogs, databases exported in RDF, hand-crafted RDF
files, etc. This service can work together with the Semantic Radar or receive pings
directly from content provides that let it know about new documents they produce.
E.g., TalkDigger and revyu.com send pings for every RDF document they produce
to ensure that the information is up-to-date even if nobody browses them using
Semantic Radar.



Fig. 3: Pings workflow in PTSW

Applications ping PTSW using one of the ping interfaces provided - REST [7] or
XML-RPC. Once the service receives a ping and checks that the document is either
RDF or HTML document with RDF auto-discovery links, it parses discovered RDF
document(s) to categorize them in one or more of the following 5 categories based
on presence of classes and properties from these ontologies: RDFS, OWL, SIOC,
FOAF and DOAP. This list can be extended to other vocabularies in the future.

We decided to concentrate on FOAF, SIOC and DOAP first because they are
widely available on the Web, and are created by end-users, content management
tools and large websites such as FOAF from LiveJournal, SIOC from online com-
munity sites and TalkDigger, and DOAP from people and companies describing
their software projects.

PTSW provides a live export of its list of URLs which can be used by soft-
ware agents to find RDF documents. This list can be filtered according to type
(vocabularies and ontologies used), date of update, RDF serialization, etc. The cat-
egorization of RDF documents by various types is used to help applications to get
a list of documents they can understand and are interested in. This way we are
minimizing the work of the software that requests a list, so that it can concentrate
on manipulating the data instead of searching for it.

PTSW acts as one of the first steps of the Semantic Web food chain: Semantic
Web search engines such as SWSE and Swoogle can use data from PTSW in order
to quickly update recently changed RDF documents and to find next documents
to index, using rdfs:seeAlso relationships that can exist from one document to
another, and other third-party applications can use it to get an up-to-date list of
RDF documents. Currently PTSW uses incoming pings to detect updated RDF
documents. The service does not poll RDF documents for updates, but may be
extended to do so.



3.4 doap:store

We use doap:store16, a search engine dedicated to DOAP projects, throughout this
paper as an example of a service that uses the list of RDF documents found by
the Semantic Radar and PTSW. It is the first service to use PTSW as its main
source of information. Since DOAP data are now created and used by many open-
source developers and there was no easy way to find a project based on its DOAP
description and metadata, we decided that the data collected by PTSW provide a
good opportunity to write such a service.

Every hour a Python script gets the list of latest pings received by PTSW and
categorised as DOAP documents. It parses the list of URLs, retrieves associated
RDF documents and puts them in a local triple store, using the 3store API [9].
Since 3store supports contexts, projects can be easily updated when PTSW receives
new pings: content of the old RDF file is removed from the store and replaced by
the updated content, so that project descriptions are constantly up-to-date.

Contrary to existing software project directories such as Freshmeat17, the main
distinguishing feature of doap:store is its distributed approach. In regular project
directories users have to register at a service and then describe their project using
some specific forms, in doap:store they just need to publish a DOAP description
of their project on the Web. Then they can ping PTSW directly or have a Seman-
tic Radar enabled Firefox browser ping PTSW when they or visitors browse the
webpage.

Fig. 4: Information flow in doap:store

We believe that this approach shows what the Semantic Web can offer to both
data providers and end-users as:

16 http://doapstore.org
17 http://freshmeat.net



– project maintainers just have to provide a single project description by creating
it in a machine-readable format - DOAP - that can be understood by different
tools such as doap:store and any generic RDF browser;

– they keep control of the project information since they don’t need to publish it
on various places where they will not be in control of their data anymore;

– end-users can get an immediate benefit of it, since updated description can be
immediately seen in previously mentioned tools.

doap:store is written in PHP and is a quite a small application with about 600
line of code including HTML templates. One of the reasons that helped to realize it
so quickly is that it does not have to deal with data discovery since this is managed
by previous steps of the application chain introduced in this paper: Semantic Radar
and PTSW. Therefore it only needs 10 lines of Python code to integrate and update
data in its local database.

The interface offers various ways to query and browse documents:

– using a basic search engine, that allow to retrieve projects by name (doap:name),
description (doap:description and doap:shortdesc), both of them, or by
hostname (using the URI of the RDF graph corresponding to a doap:Project);

– using a tagcloud of programming languages. Tags are retrieved from DOAP files
thanks to the doap:programming-language property, and then mashed-up to
solve case variations and provide a case-insensitive tagcloud;

– using a YubNub18 command line. Thus, doap:store can be queried with as simple
queries as doap name=rdf, from web browsers search engines, or other YubNub
tools;

– using SPARQL. For most advances users, a SPARQL endpoint is available,
offering the way to query the data store or creating new documents from existing
content of the data store using SPARQL CONSTRUCT instruction.

4 Evaluation

In order to evaluate our system, we made a short comparison of the number of
files found by different search engines19. Swoogle identifies 416 documents using the
DOAP ontology, while a Google search for doap filetype:rdf returns 448 docu-
ments. PTSW has matched 527 DOAP files, while SPARQL queries addressed to
doap:store returns 446 document (using a graph query to find URIs that documents
containing at least one instance of doap:Project) and 879 projects.

This comparison shows only data which are relevant to doap:store, i.e. a small
amount of all RDF data available on the Semantic Web, but one important thing to
notice is that this system provides fresh, almost real-time data. To illustrate this,
the latest file indexed by Swoogle is from the mid-February 2007, while the latest
new file registered in our system was retrieved at the beginning of April 2007. This
is even more true with SIOC data since PTSW can record it as soon as data is
created - if the blog engine adds it to the list of its pinging services.

PTSW currently has more than 7M documents indexed. A detailed evaluation
of different types of data collected by Ping The Semantic Web is outside the scope
of this paper and is planned for future work.

5 Related Work

Wiki pages, such as FOAFBulletinBoard20, were one of the first tools to collect
together a number of URIs of RDF documents. This approach works well while

18 http://yubnub.org
19 On March 30, 2007
20 http://rdfweb.org/topic/FOAFBulletinBoard



there is only a small list of documents with every person adding one or two of them.
Its disadvantages are: (1) these lists are usually not maintained (since it requires
user intervention) and, as a result, loose quality over time; (2) it is not feasible to
manually add URIs when many Semantic Web documents are being created at a
fast pace, such as with blog data export in RDF.

SWSE and Swoogle are search engines for the Semantic Web. Swoogle [6] cur-
rently contains information on more than 1.4 million RDF documents and is used
to find ontologies and Semantic Web documents. SWSE [10] crawls and indexes dif-
ferent types of web documents (XHTML, Atom, etc.), converts them to RDF and
provides a user interface to help locate and navigate this information. They may
provide APIs to access information indexed but the main use of these services is
people using a web interface to query for data.

PiggyBank [11] is a Firefox browser extension which allows to collect RDF data
in a distributed fashion. Harvest [3] is an early system that can be used to gather
information from diverse repositories to build, search, and replicate indexes, and to
cache objects as they are retrieved across the Internet.

Our architecture does not aim to replace Semantic Web search engines and
concentrates on one task only - to discover RDF documents on the web and supply
applications with a high quality list of Semantic Web documents. Its main use
is to retrieve lists of RDF documents in a machine readable form using the API
provided. An important difference from existing work is that a large number of
users participate in a collaborative discovery of resources on the Web, and that a
browser plugin is only the first step of a larger architecture.

6 Conclusion

In this paper, we described an architecture involving user participation in order to
discover Semantic Web documents by simply browsing the Web, creating an up-to-
date database of RDF documents which can be used by search engines and Semantic
web applications to provide search and user-friendly services over this information.

We have shown how a combination of simple scripts can facilitate discovery of
distributed Semantic Web data. Benefits of a number of independent applications
acting together are that every application is good at a particular task and that new
applications can be added to this pipeline because of open data formats used.

End-user applications such as doap:store can use a database of RDF documents
provided and build user friendly applications. By bridging the gap between creators
of Semantic Web data and the applications that use them, we expect this architec-
ture to provide incentives to create more data and better applications, making the
Web of Data into a reality.

While one of the principles of Web 2.0 is that tools and interfaces are driven by
users [12], our framework realizes this by providing methods that allow everyone
to be part of the Semantic Web initiative. This is a very important difference from
blog ping aggregators because collaborative discovery involves and relies upon user
participation - the architecture of participation in Web 2.0 terms. Through this
architecture, we hope to see how user activity can lead to an enrichment of Semantic
Web interfaces to distributed data.

7 Future Work

The future work regarding this architecture has two main aspects.
First, we will try to improve tools and architecture. For example, future versions

of Semantic Radar should be able to let users define services other than PTSW
they want to send pings to: that way, users could create their own pinging service
that will make some specific actions when it receive a new ping. PTSW can also be



improved, possibly including news types of data sources, such as SPARQL endpoints
and metadata embedded in webpages. We also hope that other third party services
using PTSW will be deployed, as we did with doap:store. Various search engines
and front-ends can be created, such as the Zitgist search engine to be released soon.

Performance is not an issue for PTSW now but with a growing number of pings
scalability can become a challenge for PTSW. We plan to address it by distributing
work across a number of servers as required.

Next, second part will consist of more detailed analysis of data collected. Re-
garding collaborative discovery, an interesting case study would be to see if there is
connections between navigation path and Semantic Web documents relationships.
Thus, we could see if people browse HTML documents and follow paths that are
related to the Semantic Web metadata they are associated to. To do that we will
parse RDF documents registered by PTSW and extract connections between Se-
mantic Web documents. We could also make further research about provenance of
namespaces / classes per domain to identify various clusters of metadata.

8 Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. SFI/02/CE1/I131.

References

1. D. Beckett. Rdf/xml syntax specification. w3c recommendation, 2004.
2. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,

A. Lerer, and D. Sheets. Tabulator: Exploring and analyzing linked data on the
semantic web. In Proceedings of the 3rd International Semantic Web User Interaction
Workshop, 2006.

3. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
Harvest information discovery and access system. Computer Networks and ISDN
Systems, 28(1–2):119–125, 1995.

4. J. G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards Semantically-Interlinked
Online Communities. In The 2nd European Semantic Web Conference (ESWC ’05),
Heraklion, Greece, Proceedings, May 2005.

5. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks, 30(1-7):107–117, 1998.

6. L. Ding and T. Finin. Characterizing the semantic web on the web. In 5th International
Semantic Web Conference, 2006.

7. R. T. Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD dissertation,Dept. of Computer Science, Univ. of California, Irvine,
Calif., 2000.

8. A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In
International World Wide Web Conference, 2005.

9. S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage, 2003.
10. A. Harth, J. Umbrich, and S. Decker. MultiCrawler: A Pipelined Architecture for

Crawling and Indexing Semantic Web Data. In 5th International Semantic Web Con-
ference, 2006.

11. D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the semantic web
inside your web browser. In 4th International Semantic Web Conference, pages 413–
430, 2005.

12. T. O’Reilly. What is web 2.0: Design patterns and business models for the next
generation of software. O’Reilly Nework, 2005.


