
Extensible SPARQL Functions With Embedded

Javascript

Gregory Todd Williams

University of Maryland, College Park, MD, USA
gtw@cs.umd.edu

Abstract. The SPARQL Query Language allows filtering of query re-
sults through arbitrary predicate expressions. Such expressions may in-
voke custom functions identified with IRIs, but the SPARQL imple-
mentation used must support the identified function. We present an ex-
tensible approach to allowing arbitrary function implementations using
functions identified with URLs. We provide an example using Javascript
functions, show how such a system can be implemented in the Perl based
RDF::Query SPARQL implementation and discuss security concerns.

1 Introduction

The SPARQL query language[7] has provided a powerful, standardized way to
query RDF models. Many query engine implementations exist that support
SPARQL[4], and they allow consistent querying regardless of implementation
language or platform. One of the most exciting features of SPARQL is its sup-
port for extension functions. These functions, identified by IRI, allow SPARQL
queries to rely on domain-specific approaches to filtering query results.

Extension functions provide a means of extending the SPARQL language,
but support for such functions remains sparse. Furthermore, to allow SPARQL
query engines to share support for specific extension functions, implementations
of the functions must be provided in each of the programming languages used.

We present a system in which extension functions are implemented in an
agreed upon programming language and implementations may be shared among
query engines by using an embedded interpreter for the language. Functions are
identified by URLs (a subset of IRIs) and the source code may be retrieved at
run time by dereferencing the URL. Such a system reduces duplicated effort
in implementing extension functions, and allows reference implementations to
define the semantics of functions.

2 Background

To make use of SPARQL extension functions, SPARQL query engines must
implement functionality to allow users (or administrators) to register functions
with the query engine, mapping an IRI to a function. Unfortunately, many query
engines don’t yet support this feature.

2

One popular query engine that does support this feature is ARQ[8] which
allows querying of Jena[6] models. Functions may be registered with ARQ by
installing a mapping between a URI and and a Java factory class. As a con-
venience shortcut to avoid the registering process, ARQ allows functions to be
automatically loaded by using a URI with the ”java:” IRI scheme. For exam-
ple, using functions in the java:com.hp.hpl.jena.query.function.library.

namespace will automatically make use of functions in the
com.hp.hpl.jena.query.function.library package. Figure 1 shows an ex-
ample SPARQL query with an extension function using the ”java:” IRI scheme.
Under ARQ, this example would dynamically load and execute the
com.ldodds.sparql.Distance function, filtering any potential results whose
corresponding return value was not less than a constant value.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX ldodds: <java:com.ldodds.sparql.>

SELECT ?image ?placename

WHERE {

?image a foaf:Image .

?image dcterms:spatial ?point .

?point foaf:name ?placename .

?point geo:lat ?lat ; geo:long ?long .

FILTER(

ldodds:Distance(?lat, ?long, 38.9937, -76.933) < 10

) .

}

Fig. 1. An example ARQ SPARQL query finding all images taken within 10 kilometers
of a known point using the com.ldoddds.sparql.Distance extension function.

Another query engine that supports extension functions is the Perl-based
RDF::Query[10] package. In RDF::Query, IRIs may be mapped to user functions
using the add function object or class method to register the function either
per query or globally for all queries, respectively.

Extension functions may be used in several different ways. Some exten-
sion functions are used as shorthand for accessing complex RDF structures.
jena:listMember is used to test for membership in an rdf:Seq sequence[6].
Other extension functions are used to transform scalar values; jena:sha1sum is
used to return the SHA-1 cryptographic hash of a value. A third type of func-
tion generates a new value from sets of values. ldodds:Distance can be used
to compute the distance in kilometers between two sets of latitude/longitude
values[5].

Despite having broad usefulness, these functions and many others are only
available on one or a few query engine implementations, restricting their use.

3

In some situations, the need to use such a function may be addressed by us-
ing a specific query engine. However, in situations where a (potentially large)
database is hidden behind a SPARQL query engine ”endpoint” (where an exist-
ing SPARQL engine is the only point of access to the underlying data), the user
may be forced to use the query engine that is provided.

What is needed is an approach to extension functions that allows functions
to be implemented once, and shared between query engines without a priori

knowledge of any particular function.

3 Methodology

Our system extends the RDF::Query query engine with the ability to retrieve
Javascript extension function implementations via URL, run the extension func-
tions in an embedded Javascript interpreter, and return the resulting value to
the RDF::Query engine as a native Perl object. Javascript was chosen for its wide
use on the internet, existing RDF APIs for Javascript, and the availability of
several high quality, free implementations suitable for embedding [1, 9]. However,
our approach is general, and could work with any embeddable language.

Our system makes use of an RDF schema to describe SPARQL extensions, a
SPARQL extension function API for Javascript, and optional cryptographic sig-
natures to distinguish ”trusted” implementations. We discuss these components
below, together with notes on the actual implementation in RDF::Query.

3.1 Extension Function Schema

The extension function namespace is:

http://www.mindswap.org/2007/owl/sparql#

The RDF document describing functions is used as a central location for
information about the implementation of the functions. It should contain data
relating to the location of implementation files and any cryptographic signatures,
a description of the referenced functions, a name for each function (to be used
as an entry point into the code and that will return the function value), and any
other information relevant to the implementation.

An example RDF document describing two of the jena functions using the
extension function schema is shown below in the Turtle[2] syntax:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://www.mindswap.org/2007/owl/sparql#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

<java:com.hp.hpl.jena.query.function.library.>

a ex:Namespace;

ex:hasFunction

<java:com.hp.hpl.jena.query.function.library.sha1sum>,

4

<java:com.hp.hpl.jena.query.function.library.now> .

<java:com.hp.hpl.jena.query.function.library.sha1sum>

a ex:Function;

dc:description "SHA-1 Hash";

ex:source <http://example.com/sha1.js>;

ex:signature <http://example.com/sha1.js.asc>;

ex:function "sha1" .

<java:com.hp.hpl.jena.query.function.library.now>

a ex:Function;

dc:description "Start time of query execution";

ex:source <http://example.com/now.js>;

ex:signature <http://example.com/now.js.asc>;

ex:function "now" .

The important statements of this RDF description for purposes of implemen-
tation are those using the following predicates:

– ex:source declares the location of the implementation source code.
– ex:function defines the function name in the source code that should be

called to execute the function.
– Optionally, ex:signature declares the location of any cryptographic sig-

natures that can be used by query engines in order to run only trusted
functions. This is discussed in more detail in sections 3.3 and 4.1.

3.2 Extension Function API

The implementation of extension functions must take as input RDF nodes passed
as function arguments and output an RDF node value. Therefore, a simple API
for interacting with RDF nodes is needed in the implementation language. We
use the AJAR[3] Javascript API, providing the classes RDFLiteral, RDFBlankNode,
and RDFSymbol, the common property termType, the common method toString,
and the node-creating function makeTerm. For a more detailed description of the
API, refer to the AJAR documentation.

Figures 2 and 3 show corresponding RDF description and Javascript im-
plementation of a distance function using the Javascript API. This function is
similar to ldodds:Distance, taking two latitude/longitude pairs, and return-
ing the distance between them in kilometers as computed using the great circle
distance algorithm.

3.3 Cryptographic Signatures

For security and performance reasons, it may be desirable for query engine in-
stances to only allow running extension functions that have been identified as
trusted. This can be accomplished by designating known third-parties as trusted,

5

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://www.mindswap.org/2007/owl/sparql#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.com/functions/>

a ex:Namespace;

ex:hasFunction <http://example.com/functions/distance> .

<http://example.com/functions/distance>

a ex:Function;

dc:description "Geographic (great circle) distance in kilometers";

ex:source <http://example.com/distance.js>;

ex:function "gcdistance" .

Fig. 2. RDF description of a distance extension function.

function gcdistance(lat1, lon1, lat2, lon2) {

lat1 = deg2rad(makeTerm(lat1).toString());

lat2 = deg2rad(makeTerm(lat2).toString());

lon1 = deg2rad(makeTerm(lon1).toString());

lon2 = deg2rad(makeTerm(lon2).toString());

var londiff = Math.abs(lon1 - lon2);

var s1 = square(Math.sin((lat2 - lat1) / 2));

var s2 = square(Math.sin(londiff / 2));

var sq = Math.sqrt(

s1

+ Math.cos(lat1)

* Math.cos(lat2)

* s2

);

var adist = 2 * Math.asin(sq);

var r = 6372.795;

return r * adist;

}

function square (x) { return x * x; }

function deg2rad(d) { return Math.PI*d/180 }

Fig. 3. Javascript implementation of a distance extension function.

6

and trusting any implementation that has a valid cryptographic signature from
the trusted third-party.

If configured to allow only trusted functions, our implementation takes a list
of trusted GPG public key fingerprints, attempts to verify all available signatures
of a requested implementation, and only proceeds if there exists a signature
created with a trusted key.

The need for a possibly growing list of arbitrary signatures in the RDF
description is the primary reason why function metadata and implementation
source code must reside at distinct URLs. As new signatures are generated, meta-
data describing the signatures must be added to the RDF description. However,
this addition must not invalidate existing signatures. Therefore, signatures must
be made against the implementation source code and referenced in the seperate
function metadata RDF document.

3.4 Extending RDF::Query

We implemented this system in the Perl-based RDF::Query query engine using
an embedded Javascript interpreter. During query execution, an extension func-
tion is retrieved as a code reference via a lookup method. This method first looks
for a native implementation of the extension function. If no implementation is
found, and the function is identified with a URL, the URL is dereferenced and
the resulting content is interpreted as an RDF document describing the func-
tion implementation. Using this RDF data, the implementation source code is
retrieved, compiled, and verified against any signature files. If this process is
successful, a code reference is returned that will behave just as a native imple-
mentation would.

Figure 4 shows example code for constructing an RDF::Query query engine,
enabling the use of URL-based extension functions, and restricting their use to
only those signed by a known key. In this example, a Javascript implementation
of the SHA-1 hashing function is used to find all people with an email address
that hashes to a known value.

In the construction of the query engine object, two new constructor fields are
introduced to support the URL-based extension functions:

– net filters is passed with a true value to enable URL-based extension
functions.

– trusted keys is passed with an array reference containing a list of the
trusted signing keys’ cryptographic fingerprints. This field is optional.

After the first use of an extension function, the source code and signatures are
cached to prevent unnecessary repeated downloads. Using features of HTTP/1.1,
the content of the source and signatures need only be downloaded again if these
documents change. On repeated requests where the documents have not changed,
a response with only a small header is transfered. This approach saves bandwidth
while ensuring that changes to the source code and signatures are not ignored
due to arbitrarily long caching – an important feature for long running query

7

my $sparql = <<"END";

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX func: <http://example.com/functions.rdf#>

SELECT ?person

WHERE {

?person a foaf:Person ;

foaf:mbox ?mbox .

FILTER(

func:sha1(?mbox) = "f80a0f19d2a0897b89f48647b2fb5ca1f0bc1cb8"

) .

}

END

my $query = RDF::Query->new($sparql, undef, undef, ’sparql’,

net_filters => 1,

trusted_keys => [’1150 BE14 FF91 269F 398B 0F4E 0253 5AF9 A2B9 659F’],

);

Fig. 4. Setting up an RDF::Query query engine with support for network-based exten-
sion functions only when signed by a known key.

engines. Furthermore, if the source code was verified against a signature, the
verified status of the code may be cached when using the same trusted key and
source code to avoid unnecessary repeat verifications.

4 Results and Analysis

The implementation of URL-based extension functions in RDF::Query was rel-
atively straightforward. Just sixteen lines of existing code were modified, and
three new methods were added to the main query engine class to initialize an
embedded Javascript interpreter and to compile and call the extension func-
tion. There are several issues of concern with such an implementation relating
to potential security and performance degredation. These issues are discussed
below.

4.1 Security and Performance Concerns

With many SPARQL endpoints being made publicly available for use by the
public, thought must be given to the potential to abuse these systems. Relat-
ing to URL-based extension functions, such abuse could affect overall system
performance, or even cause a denial of service attack against external machines.

Query engines that may run unknown code loaded as an extension function
must be aware of the potential problems doing so may cause. A denial of service
attack may be initiated against a foreign server by using an extension function
URL pointing to a very large resource (in which case available local bandwidth

8

may be a concern) or a resource that is computationally intensive to return
(where the total system load of the remote server may be a concern). Similar
attacks may be initiated if the embedded Javascript environment allows the
creation of network connections.

Another potential problem of running arbitrary code is local system load. If
an extension function runs for an unexpectedly long time, it may prevent the
server from answering other requests or may overrun a time limit on the request
(as might be likely if the request was made using HTTP). Even if the running
time of a function is bounded, system load may still be of concern if the overhead
of switching contexts between the query engine and the embedded language is
high. If the potential result set before filtering is large, and many calls to the
extension function are necessary, the context switching overhead may overwhelm
the total running time of the query.

Public endpoints may prevent many potential problems by allowing only
extension functions signed by trusted keys. By relying on a trusted third party
to sign a function, the signature may be used to indicate the correctness of the
function (by a lack of syntactic and semantic errors) as well as the absence of
malicious code. This approach may work well for domain-specific functions where
a central organization or interest group could provide the trusted signatures.

To address denial of service attempts and performance concerns, a query
engine may also define configurable maximums for source code size and run time.
In situations where a maximum run time isn’t acceptable (where query results
must be provided despite run time), total run time and the overhead of context
switching may be addressed by providing a native implementation of commonly
used extension functions. Native implementations may also be important for
functions where a native implementation can provide much better performance
(due to more efficient data structures, access to hardware acceleration, etc.).

5 Conclusion and Future Work

We believe this approach to allowing arbitrary extension functions can provide
commonly used functions to many query engines with comparatively little work.
However, to realize this potential and to be generally useful, our approach would
need implementation in more than just one query engine.

Future work is needed to implement parts of the Javascript API to allow
extension functions to access the underlying RDF model, allowing implementa-
tion of model-dependant functions such as jena:listMember. Future work may
also include extending the RDF schema to allow for alternate programming lan-
guage and cryptographic signature types. A language designed specifically for
embedding (such as Lua) may prove more desirable for the implementation of
functions, while allowing other signature types (x.509 certificates, for example)
could allow leveraging existing key infrastructures. Finally, we hope to follow
this work with a deeper investigating of the real-world applications and benefits
of such a system.

9

This work was supported by grants from Fujitsu, Lockheed Martin, NTT
Corp., Kevric Corp., SAIC, the National Science Foundation, the National Geospa-
tial - Intelligence Agency, DARPA, US Army Research Laboratory, and NIST.

References

1. Webkit. http://developer.apple.com/opensource/internet/webkit.html.
2. Dave Beckett. Turtle - Terse RDF Triple Language.

http://www.dajobe.org/2004/01/turtle/.
3. Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,

James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and an-
alyzing linked data on the semantic web. In 3rd International Semantic Web User
Interaction Workshop, November 2006.

4. Christian Bizer and Daniel Westphal. Update on semantic web toolkits for scripting
languages. In 2nd Workshop on Scripting for the Semantic Web (SFSW2006), June
2006.

5. Leigh Dodds. Sparql geo extensions. http://xmlarmyknife.org/blog/archives/000281.html.
6. Brian McBride. An introduction to rdf and the jena rdf api.

http://jena.sourceforge.net/tutorial/RDF API/.
7. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF

(Working Draft). http://www.w3.org/TR/rdf-sparql-query/.
8. Andy Seaborne. ARQ - A SPARQL Processor for Jena.

http://jena.hpl.hp.com/ afs/ARQ/.
9. Jens Thiele. Embedding spidermonkey - best practice.

http://egachine.berlios.de/embedding-sm-best-practice/embedding-sm-best-
practice.pdf.

10. Gregory Todd Williams. RDF::Query. http://search.cpan.org/dist/RDF-Query/.

