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Abstract

PESInet is an Automatic Prosody Recog-
nition system aiming at classifying Infor-
mation Units as Statement, Question or
Exclamation. PESInet adopts a modular
architecture, with a master NN evaluat-
ing the results of two independent BLSTM
NNs that work on audio and its tran-
scription. PESInet has been trained with
our own three-class, balanced corpus com-
posed of about 1.5 million text phrases and
60 000 utterances of recited and sponta-
neous speech. PESInet reached an accu-
racy of 80% on three classes, and 91% on
two classes (Question vs Non-question).
Finally PESInet, compared against human
listeners on a two-class test based on a dif-
ferent corpus, reached a better Accuracy
(89% for PESInet, against 80% for human
listeners).

1 Credits

The Prosody Extraction by Sound Interpreting net-
work (PESInet) is part of the Lend Your Voice
(LYV) project, which has been funded by the
Polisocial Award1 2016, in collaboration with
Fondazione Sequeri Esagramma2.

2 Introduction

The goal of PESInet was to investigate whether
clues derived from text could improve the recogni-
tion of simple prosodic forms in Information Units

1http://www.polisocial.polimi.it
2https://www.esagramma.net

(IUs). In particular, we focused on Statement,
Question, and Exclamation which are proposi-
tion’s structures and are independent of the prag-
matic function of the corresponding IU: each one
can assume a large set of illocutionary acts, as ex-
plained into the Language into Act theory (L-AcT)
described in Cresti (2014). An IU is composed
of a textual realisation (i.e., a written phrase) and
an acoustic realisation (an audio recording of a
speaker uttering such a phrase), and conveys a spe-
cific informative intention (Austin, 1975; Cresti,
2000). We designed a modular model based on
Neural Networks (NNs), able to highlight how
much audio and text affected recognition accuracy.
Moreover, to validate our results, we compared
our NN model against human listeners, on a set of
IUs that did not overlap with the corpus we used
to train the model.

3 Background

The majority of studies on prosody regards the au-
tomatic recognition or detection of single prosodic
clues (Ren et al., 2004; Jeon and Liu, 2009; Tam-
burini and Wagner, 2007; Taylor, 1993). Others,
deal with the detection of phrase boundaries or
prosodic phrases (Liu et al., 2006; Wightman and
Ostendorf, 1991; Rosenberg, 2009). Just a few
works, however, focus on modality detection. In
the following we briefly introduce some of them.
Question detection is investigated in Tang et al.
(2016) using Recurrent Neural Networks (RNN),
in the Mandarin language. Authors propose sev-
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eral RNN and Bidirectional RNN (BRNN) mod-
els, trained on a simulated call-centre recordings
consisting of just 2850 Question and 3142 Non-
question IUs. The best result is an F1 score of
85.5%.

The work described in Yuan and Jurafsky
(2005) focuses on Question and Statement detec-
tion, from text and audio, for Chinese; authors
investigate the influence of text in prosody com-
prehension, on a telephone corpus (with transcrip-
tions). Their classifier achieves an error rate of
14.9% with respect to a 50% chance-level rate.
Quang et al. (2007) use decision trees to automat-
ically detect Questions in a small elicited French
and Vietnamese corpora, leveraging both acous-
tic and lexical features (unigrams, bigrams, and
presence of so-called “interrogative terms”). The
best result is an F1 of 80% for the Vietnamese lan-
guage.

Finally, the work described in Li et al.
(2016) combines Convolutional NNs (CNNs) and
Bidirectional Long Short-Term Memory NNs
(BLSTM) to extract textual and acoustic fea-
tures for recognising stances (Affirmative, Neu-
tral, Negative opinions) in the Mandarin language.
It exploits a small, manually-tagged corpus of four
debate videos (1254 IUs). Combining both au-
dio and text this system reaches an Accuracy of
90.3%.

None of the works mentioned above is perfectly
comparable with ours and, on the other hand, all
of them are based on ah-hoc corpora (as we did).
This makes impossible to compare the results we
obtained against other approaches. We, however,
validated our results comparing our model against
human listeners.

4 The corpus

Our own corpus is composed of eBooks, EPUB3
audio-books (an EPUB3 audio-book contains both
text and audio recording, time-aligned at the level
of sentence), and the LIT/DIA-LIT corpus (Biffi,
1976; Buroni, 2009), which contains audio record-
ings of Italian TV shows, with transcriptions.

From eBooks, the textual part of EPUB3 audio-
books, and transcriptions of LIT/DIA-LIT we ex-
tracted about 1.5 million sentences, balanced on
the three target classes: Statement, Question, and
Exclamation.

From LIT/DIA-LIT audio recordings and the
audio part of EPUB3 audio-books, we collected

about 60 000 utterances (again, balanced on
the three target classes). Both sentences and
utterances were tagged with the correct class,
leveraging the punctuation marks we found in
text/transcriptions. Of course, we removed such
punctuation marks from the textual part of the cor-
pus. Moreover, we discarded all the sentences
containing a sub-phrase or other complex syntac-
tic structures. In doing so we aimed at retaining
plain simple examples of statements, questions,
and exclamations.

We are aware that leveraging punctuation marks
for tagging sentences can lead to confounds, as ex-
clamation marks is also used for Vocatives and Or-
ders, while the full stop is also used for Orders.
Anyway, it was simply not possible to manually
review the text collection and manually solve the
problem. Thus, we assume our corpus is affected
by a small amount of noise (in other words, we as-
sume Exclamations and Statements are way more
frequent than Vocatives and Orders).

Notice that the question marks might be
used for different question typologies (rhetor-
ical, information-seeking, confirmation-seeking,
biassed), and that question could be further par-
titioned into open questions, polar questions, etc.
Thus, the question mark is used to tag sentences
with wildly divergent phonetic forms. This is not,
however, a blocking issue: it only makes harder
for the classifier to learn the input/output correla-
tion. In particular, this is one of the reasons that
lead us to the idea of leveraging text to improve
the classification of IUs.

Summing up, we built three corpora:

• ACorpus: audio corpus composed of about
60 000 .wav labelled samples.

• TCorpus: textual corpus composed of about
1.5 million .txt labelled samples.

• MCorpus: mixed corpus composed of all the
ACorpus files, with their transcriptions (from
the TCorpus); about 60 000 labelled samples.

5 Features extraction

From acoustic and textual samples we derived a
set of features that our NNs leveraged for training
and recognition.

5.1 Acoustic features
With a sample rate of 44.1 kHz, we adopted a win-
dow of 2048 samples with a hop-size of 1024 sam-



ples (i.e., every 23 ms a new vector of acoustic
features is produced). Notice that our window is
larger than the one usually adopted by ASRs; in
fact, we are not interested in phone recognition
and, on the other hand, prosody phenomena ap-
pear in larger temporal scale than the one involv-
ing individual phones.

We tried several window sizes, and several
acoustic features; in particular we experimented
with different combinations of Cepstrum coeffi-
cients. At the end, we come up with the following
129 acoustic features, normalised (to minimise de-
pendency on speakers and recording settings) and
calculated by means of Praat (Boersma and others,
2001), as they provided the best results:

• pitch value, with its delta and delta-delta

• energy, with its delta and delta-delta

• the first 40 Cepstrum coefficients, with their
deltas and delta-deltas

• energy of such 40 Cepstrum coefficients (as
MFCC defines), with its delta and delta-delta

Notice that we did not adopt a true “deep” archi-
tecture, as features were not “discovered” by the
network. The field of audio analysis already pro-
vides a huge set of well-known, informative fea-
tures; thus, in our opinion, there is no point in let
the network approximating them. Moreover, pre-
calculated features permit to simplify the network.
Summing up, each utterance was transformed into
an array that contains a column of 129 real num-
bers every 23ms.

5.2 Textual features

To feed the model with textual samples we used
the usual word embedding technique, which repre-
sents the vocabulary in a continuous vector space
of 300 dimensions (Sahlgren, 2008). In particu-
lar we adopted Italian Word Embeddings, a pre-
trained model of 700 000 words based on GloVe
(Pennington et al., 2014).

Summing up, each sentence was transformed
into an array that contains a column of 300 real
numbers for each token. Notice that punctuation
marks were discarded and no lemmalisation was
applied.

Available at: http://hlt.isti.cnr.it/
wordembeddings/

6 Architecture

PESInet is composed of three different NNs:

1. Audio-based NN

2. Text-based NN

3. Master NN combining the prediction of the
two preceding NNs

We developed two NN architectures: for Audio-
based and Text-based NNs, and for Master NN.

6.1 The convolutional block

Acoustic and textual features defined in Section 5
generated low-level pieces of information, look-
ing at very local phenomena. For considering
higher-level phenomena, both the Audio-based
and the Text-based NNs relied on the same archi-
tecture, leveraging an initial multi-layer convolu-
tional block.

A convolutional layer is composed of several
kernels with a predefined width, which “scan” the
input array. Each kernel, after the training phase,
specialises in finding certain patterns in the in-
put sequence. The network learns “high level”
features (i.e., common prosody contours, for the
Audio-based NN, or particular word sequences for
the Text-based NN) from our low-level feature set.

Features related to prosody unfold along dif-
ferent time extents (Cutugno et al., 2005): we
found dependencies both in short and long time
periods. So the idea was to use different kernel
widths, in order to allow the network to consider
different pattern lengths. The hint to adopt this
technique come from various papers (Sbattella et
al., 2014; Gussenhoven, 2008; Büring and others,
2009), which thoroughly analysed the idea of si-
multaneously analysing the input at different tem-
poral granularities with the use of differently-sized
kernels.

In particular, our convolutional block is com-
posed of three layers, which “scan” at three dif-
ferent temporal granularity levels. In general, if
s is the stride adopted for kernels at any tempo-
ral granularity level and di is the kernel height
at the i-th temporal granularity level, the kernel
height at the (i + 1)-th temporal granularity level
is di+1 = di + s; see Figure 1, for a simplified
example with two levels. Stride is chosen so that,
after each shift of the filter, the kernel will include
a small subset of the previously analysed input.



Finally, padding is applied to the input se-
quence, so that the shorter kernels (and, by con-
struction, all the other, longer kernels) fit the se-
quence length.

Figure 1: Kernels K(l1) and K(l2) at two different
temporal granularity levels.

Being the kernels of different heights, they will
cause the outputs to have different dimension as
well, relatively to the layers they come from.
These dimensions are adjusted in the following
layer of the network. Figure 2 shows a simplified
schema with two differently-sized kernel groups.

6.2 Audio-based and Text-based NNs

Both the Audio-based and the Text-based NNs re-
lied on a multi-layer network. The general archi-
tecture is composed of three BLSTM layers on top
of the convolutional block. We connected the first
convolutional layer to the first BLSTM layer; then,
the second convolutional layer is connected, to-
gether with the output from the first BLSTM, to
the second BLSTM layer; finally, the third con-
volutional layer is connected, together with the
output of the second BLSTM layer, to the third
BLSTM layer. Figure 3 shows the way in which
the convolutional block is used.

The Softmax layer shown in the Figure 3 is used
during the training phase and then removed, as the
Text-based and Audio-based NNs are combined
together with the Master NN.

6.3 Master NN and PESInet

The Master NN is composed of a fully-connected
layer, and a Softmax layer. PESInet, the result-
ing network, is shown in Figure 4. Notice that
PESInet is supposed to works on utterances, while
the text is generated by means of an ASR; in fact,
this is the setting we expect to be adopted during

Figure 2: Convolution with two kernel sizes (i.e.,
two temporal granularity levels).

actual usage of PESInet. Our corpus, conversely,
was based on human-generated text; we are aware
that in doing so we did not consider the errors due
to the ASR and, as a consequence, overestimated
the figures obtained during the training/validation
procedure. The rationale was highlighting the con-
tribution of text-related features to the recognition
of prosodic forms, and thus we decided to avoid
the “noise” introduced by ASR-related errors.

As a final remark on the ASR, notice that it is
supposed to not add any punctuation mark to the
transcription it generates.

7 Training

The architecture was implemented, trained, and
tested using the TensorFlow library along with
Python 3.6. The code itself was run on a machine
equipped with 32GB of RAM, a Xeon Intel pro-
cessor and a Nvidia Titan X (Pascal) GPU. During
training, we adopted the early stopping (using Ac-
curacy as reference index); moreover, to improve



Figure 3: Structure of the Text-based and Audio-
based NNs.

the learning effectiveness, we used the variational
drop-out on recurrent layers. We started train-
ing, independently, the Audio-based and the Text-
based NNs, on 80% of their respective corpora:
ACorpus and TCorpus. Then, once removed the
final Softmax layer from them, these NNs where
attached to the Master NN, and a further training
–involving 80% of the MCorpus– was performed
on PESInet. In particular, we investigated three
approaches:

1. Allowing PESInet to train only the Master
NN weights (all the others remain fixed).

2. Allowing PESInet to change all its internal
weights (also those already trained).

3. Training PESInet from scratch, skipping
training of Audio-based and Text-based NNs.

8 Evaluation

Validation was performed using 20% of the cor-
pus. We experimented with several feature com-
binations, hyperparameter values, and network
structures, before reaching the final models.

The Audio-based and Text-based NNs gave the
following Accuracies: 0.68 and 0.79. It’s inter-
esting that the Text-based NN gave a better Ac-
curacy than the Audio-based NN. This was sur-
prising, as, after all, prosody is an acoustic phe-
nomenon. Nevertheless, data seem to show that

Figure 4: PESInet structure.

Predicted
Stat. Excl. Quest.

Tr
ue

Stat. 1366 234 155
Excl. 285 1068 316
Quest. 216 484 1130

Table 1: Confusion matrix for Audio-based NN.

the words composing the utterance are indeed a
good predictor of prosody. Moreover, considering
that ACorpus was much smaller than TCorpus, the
surprisingly low results of Audio-based NN can be
explained.

Table 1 and Table 2 show the confusion matri-
ces for the two NNs. It’s interesting to notice that
Audio-based NN predicted Statements much bet-
ter than the other two classes, while Text-based
NN was also very good in recognising Questions.

About PESInet, Table 3 shows that the approach
2 obtained, as expected, the best results. As the
confusion matrix of Table 4 shows, audio and text
cooperated to improve recognition of all the three
classes.

As a further experiment, we trained and tested
PESInet on two classes: Question vs Non-
question, adapting the same PESInet architec-
ture to handle 2 classes. The corpus tags

Predicted
Stat. Excl. Quest.

Tr
ue

Stat. 48 478 7233 3358
Excl. 8786 43 887 6064
Quest. 4494 5905 48 495

Table 2: Confusion matrix for Text-based NN.



Trained NN PT F1 Loss Acc.
1. Master NN yes 0.79 0.55 0.77
2. PESInet yes 0.80 0.49 0.80
3. PESInet no 0.80 0.55 0.78

Table 3: Results for PESInet. PT: Pre-training
Text-based and Audio-based NNs.

Predicted
Stat. Excl. Quest.

Tr
ue

Stat. 1444 205 106
Excl. 222 1242 205
Quest. 92 215 1523

Table 4: Confusion matrix for PESInet.

Trained NN PT F1 Loss Acc.
2. PESInet yes 0.91 0.39 0.91

Table 5: Results for PESInet, two classes.

{Exclamation, Statement} were rewritten as Non-
question, and we randomly extracted a number
of Non-Question samples equals to the Question
samples. Then, we used 90% of such dataset for
training and 10% for testing. Accuracy reached
91% (Table 5).

8.1 PESInet against human listeners

Finally, to validate the results we obtained, we
conducted a perceptive experiments with 302 Ital-
ian speakers (Cenceschi et al., 2018b; Cenceschi
et al., 2018a). The aim of the experiment was to
understand the role of acoustic clues and textual
clues in the perception of various prosodic forms.

The experiment was divided into several tests;
each test was about a specific prosodic form: users
were asked to listen a set of IUs and select which
of them carried the expected prosodic form. In that
experiment we used an ad-hoc audio/textual cor-
pus called SI-CALLIOPE, where 14 professional
actors spoke a set of 139 sentences, for a total
of 1946 IUs. Notice that SI-CALLIOPE did not
share anything, in terms of sentences and speak-
ers, with corpora we used to train PESInet.

In particular, for the Question/Non-question
test, each user listened to a set of audios randomly
extracted from 714 question IUs and 1232 non-
question IUs. The average accuracy was 80% (std.
dev.: 7.24%).

Running the two-class version of PESInet on
the same test, we got an Accuracy of 89%.

We argue that this surprisingly good Accu-

racy for our NN (or surprisingly bad Accuracy
for human listeners) could be caused by de-
contextualisation: in the experiment each IU was
given in isolation, without any dialogue context;
probably, listeners were more affected by that
lacking of context than our NN. Anyway, this is
just a hypothesis that should be investigated and
deepened with further experiments, as the compar-
ison could be tainted by a large number of other
confounds, such as the non ecological nature of
the task and the stratification of the repertoire of
Italian speakers.

9 Conclusions and discussion

PESInet got an Accuracy of 80% on three classes
and and 91% on two classes. Moreover, PESInet
reached very good results when compared to hu-
man listeners on a totally different corpus. Al-
though this human/NN comparison should be
taken with a grain of salt, we believe that it is a
hint that the network works well and the results are
truly promising. As a future work, more record-
ings should be added to ACorpus and MCorpus to
improve the performance of the Audio-based NN
and, as a consequence, of the whole PESInet.

Currently, we are working for cleaning the code
and streamlining the training procedure, as we
plan to release the code.
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