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Abstract

In this paper, we present WebIsAGraph,
a very large hypernymy graph compiled
from a dataset of is-a relationships ex-
tracted from the CommonCrawl. We pro-
vide the resource together with a Neo4j
plugin to enable efficient searching and
querying over such large graph. We use
WebIsAGraph to study the problem of de-
tecting polysemous terms in a noisy termi-
nological knowledge graph, thus quantify-
ing the degree of polysemy of terms found
in is-a extractions from Web text.

1 Introduction

Acquiring concept hierarchies, i.e., taxonomies
from text, is a long-standing problem in Natu-
ral Language Processing (NLP). Much previous
work leveraged lexico-syntactic patterns, which
can be either manually defined (Hearst, 1992)
or automatically learned (Shwartz et al., 2016).
Pattern-based methods were shown by (Roller et
al., 2018) to outperform distributional methods,
and can be complemented with state-of-the-art
meaning representations such as hyperbolic em-
beddings (Nickel and Kiela, 2017) to infer miss-
ing is-a relations and filter wrong extractions (Le
et al., 2019). Complementary to these efforts, re-
searchers looked at ways to scale hypernymy de-
tection to very large, i.e., Web-scale corpora (Wu
et al., 2012). Recently, (Seitner et al., 2016) ap-
plied Hearst patterns to the CommonCrawl1 to
produce the WebIsaDb. Using Web corpora makes
it possible to produce hundreds of millions of is-
a triples: the extractions, however, include many
false positives and cycles (Ristoski et al., 2017).
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1http://commoncrawl.org

Methods for hypernym detection like, e.g.,
pattern-based approaches, have a limitation in
that they do not necessarily produce proper tax-
onomies (Camacho-Collados, 2017): automati-
cally detected is-a relationships, on the other hand,
can be used as input to taxonomy induction algo-
rithms (Velardi et al., 2013; Faralli et al., 2017;
Faralli et al., 2018, inter alia). These algo-
rithms rely on the topology of the input graph,
and, therefore, cannot be applied ‘as-is’ to Web-
scale resources like WebIsaDb, since this resource
merely consists of a set of triples. Moreover, We-
bIsADb does not contain fully semantified triples,
i.e., subjects and objects of the is-a relationships
consist of potentially ambiguous terminological
nodes. This is because, due to their large size,
source input corpora like the CommonCrawl can-
not be semantified upfront. Linking to the seman-
tic vocabulary of a reference resource like DBpe-
dia (Hertling and Paulheim, 2017) also barely mit-
igate this problem, since Wikipedia-centric knowl-
edge bases have not, and cannot be expected to
have, complete coverage over Web data (Lin et al.,
2012).

In this paper, we present an initial solution to
these problems by building the first very large hy-
pernymy graph, dubbed WebIsAGraph, built from
is-a relationships extracted from a Web-scale cor-
pus. This is a relevant task: although Word-
Net (and other thesauri) already provides a cata-
log of ambiguous terms, many nodes of WebIsA-
Graph are not covered in available lexicographic
resources, because they are proper names, techni-
cal terms, or polysemantic words. Our graph –
which we make freely available to the research
community to foster further work on Web-scale
knowledge acquisition – is built from the We-
bIsADb on top of state-of-the-art graph mining
tools2: thanks to an accompanying plugin, it can
be easily searched, queried, and explored. We-

2Neo4j: https://neo4j.com/



bIsAGraph may represent an opportunity to re-
searchers for investigating approaches to a variety
of tasks on large automatically acquired term tu-
ples. As an example, we use our resource to inves-
tigate the problem of identifying ambiguous termi-
nological nodes. To automatically detect whether
a lexicographic node is ambiguous or not, we use
information from both the graph (topological fea-
tures) and textual labels (word embeddings) as
features to train a model using supervised learn-
ing. Our results provide a first estimate of the de-
gree of polysemy that can be found among is-a
relationships from the Web.

2 Creating WebIsAGraph

We created a directed hypernymy graph from the
WebIsADb (Seitner et al., 2016). WebIsADb is
a Web-scale collection of noisy hypernymy re-
lations harvested with 58 extraction patterns and
consisting of 607,621,170 tuples. Since the aim of
WebIsADb was to study the behaviour (on a large
scale) of Hearst-like extraction patterns, rather
than collecting relations with high precision, in
order to reduce noise (false positives) we pre-
selected the top-20 more precise extraction pat-
terns in (2016) from the original 58 and identified
385,459,302 tuples.

After removing matches with a frequency lower
than 3 and isolated nodes, i.e., nodes with degree
equal to 0, we obtained a directed graph consist-
ing of 33,030,457 nodes and 65,681,899 directed
edges (see Table 1). The generation of such a large
graph required several weeks of computation on a
quad-core machine with 32 GB of RAM, using a
state-of-the art graph-db system, like Neo4j. Note
that the inherent sequential nature of the task of
indexing tuples, nodes and edges does not benefit
from the use of parallel computation. Next, we
developed efficient tools for graph querying,
which are released to the community, and de-
scribed in https://sites.google.com/
unitelmasapienza.it/webisagraph/,
where we also include examples of queries.

3 Measuring the polysemy of
WebIsAGraph

Let pSI(n) be the function that predicts if a termi-
nological node n corresponds to a monosemous or
a polysemous concept. We leverage a companion
sense inventory as a ground truth, and we train dif-
ferent classifiers with a combination of topological

WebIsAGraph
nodes 33,030,457
edges 65,681,899
weakly connected components 3,099,898
nodes of largest component 26,099,001
Avg. node Degree 3.97

Table 1: Structural statistics of WebIsAGraph

and textual features, described hereafter.

Topological features. Our conjecture is that in a
taxonomy-like terminological graph (even a noisy
one) there is a correlation between the mutual con-
nectivity of a node neighborhoods and its pol-
ysemy. For example, consider the polysemous
word machine – which, according to WordNet,
has at least six heterogeneous meanings, ranging
from the ‘any mechanical or electrical device’ to
‘a group that controls the activities of a political
party’ – and the monosemous word floppy disk.
We expect to observe a different degree of mu-
tual connectivity across the corresponding incom-
ing and outgoing nodes. In particular, for monose-
mous words, we expect a higher mutual connec-
tivity. With reference to Figure 1, left side, the
two hypernyms of ”floppy disk”: ”memory” and
”data storage”, have also ”RAM” as a common
hyponym. In contrast, nodes in the direct neigh-
borhood of ”machine” (leftmost graph in Figure
1) do not have mutual connections.

Our aim is thus to identify topological features
that may help quantifying the previously described
connectivity properties. To cope with scalabil-
ity, we consider topological features built on top
of 1-hop/2-hop sub-graphs of a node n. Hence,
we identify two induced sub-graphs G−+(n) and
G+−(n), induced on V −+(n) = In(n) ∪v∈In(n)
Out(v) and V +−(n) = Out(n) ∪v∈Out(n) In(v)
respectively, where In(x) and Out(x) are the sets
of incoming and outgoing nodes of x (including
x). Next, we remove from these sub-graphs the
node n, and compute the following features:

• ccG−+(n) and ccG+−(n): the resulting number
of weakly connected components;

• vG−+(n) and vG+−(n): the resulting number of
nodes;

• eG−+(n) and eG+−(n): the resulting number of
edges.

With reference to the example of Figure 1, the
light gray sub-graph (a) is G−+(n), the dark sub-
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Figure 1: An example excerpt of the neighborhood
induced sub-graphs for ”machine” and ”floppy
disk”, (a)G−+(n) in gray and (b)G+−(n) in dark
gray. Dashed edges connect each n with its hyper-
nyms and hyponyms.

graph (b) is G+−(n), and furthermore for n =
”machine”: ccG−+(n) = 2, ccG+−(n) = 2,
vG−+(n) = 5, vG+−(n) = 5, eG−+(n) = 3, and
eG+−(n) = 3, while for the n =”floppy disk”:
ccG−+(n) = 1, ccG+−(n) = 1, vG−+(n) = 4,
vG+−(n) = 2, eG−+(n) = 3, and eG+−(n) = 1.

Textual features. Similarly to topological fea-
tures, our hypothesis is that textual features of the
neighborhood nodes should exhibit a lower aver-
age similarity when n is polysemous. We extract
textual features on top of pre-trained word em-
beddings, widely adopted in many NLP-related
tasks (Camacho-Collados and Pilehvar, 2018).
Formally, given a node n:

• # »

W (n) is the word embedding vector of n
computed as follows:

# »
W (n) =

∑
t∈tokens(n)

#  »we(t)

|tokens(n)| (1)

where tokens(n) is the function that retrieves
the set of tokens composing the word n (e.g., if
n = hot dog, tokens(n) = {hot , dog}), and
#  »we(t) is a pre-trained word embedding vector;

• ∆in(n) and ∆out(n): the cosine similarity be-
tween

# »

W (n) and the average word embeddings
vector of incoming and outgoing nodes of n re-
spectively;

∆in(n) = CosSim(
# »
W (n),

∑
m∈In(n)

# »
W (m)

|In(n)| ) (2)

∆out(n) = CosSim(
# »
W (n),

∑
m∈Out(n)

# »
W (m)

|Out(n)| ) (3)

Features
topological textual all

Algo. P R F1 P R F1 P R F1

W
or

dN
et

Rnd 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47
±.05 ±.05 ±.05 ±.05 ±.05 ±.05 ±.05 ±.05 ±.05

NN 0.61 0.61 0.60 0.72 0.72 0.72 0.73 0.73 0.73
±.02 ±.02 ±.02 ±.03 ±.03 ±.02 ±.04 ±.04 ±.04

ABC 0.62 0.62 0.62 0.67 0.67 0.67 0.70 0.70 0.70
±.03 ±.03 ±.03 ±.02 ±.02 ±.01 ±.03 ±.03 ±.03

GBC 0.62 0.62 0.62 0.69 0.68 0.68 0.72 0.71 0.71
±.02 ±.02 ±.02 ±.01 ±.01 ±.01 ±.03 ±.03 ±.03

D
B

pe
di

a

Rnd 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
±.03 ±.03 ±.03 ±.03 ±.03 ±.03 ±.03 ±.03 ±.03

NN 0.60 0.60 0.59 0.73 0.73 0.73 0.74 0.74 0.74
±.01 .01 ±.01 ±.03 ±.03 ±.03 ±.03 ±.03 ±.03

ABC 0.60 0.60 0.60 0.69 0.69 0.69 0.71 0.71 0.71
±.02 ±.02 ±.02 ±.02 ±.02 ±.02 ±.04 ±.04 ±.04

GBC 0.61 0.61 0.61 0.70 0.70 0.70 0.73 0.73 0.73
±.02 ±.02 ±.02 ±.03 ±.03 ±.03 ±.02 ±.02 ±.02

W
or

dN
et
∪D

B
pe

di
a Rnd 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

±.01 ±.01 ±.01 ±.01 ±.01 ±.01 ±.01 ±.01 ±.01
NN 0.54 0.53 0.50 0.70 0.70 0.70 0.71 0.70 0.70

±.03 ±.05 ±.12 ±.02 ±.02 ±.02 ±.02 ±.01 ±.01
ABC 0.55 0.55 0.55 0.64 0.64 0.64 0.65 0.65 0.65

±0.02 ±0.02 ±0.02 ±.01 ±.01 ±.01 ±.02 ±.02 ±.02
GBC 0.56 0.56 0.55 0.66 0.66 0.65 0.67 0.67 0.67

±0.02 ±0.01 ±0.01 ±.02 ±.02 ±.02 ±.02 ±.02 ±.02

Table 2: Performance of different algorithms to
detect node ambiguity.

• Gini(n): sparsity index (David, 1968) of
# »

W (n).

3.1 Evaluation

Computing features. Topological features are
efficiently extracted using the query tool men-
tioned in Section 2. To compute textual features
(see Section 3) we use the Glove pre-trained word
embedding vector (Pennington et al., 2014) of
length 300 from the CommonCrawl.3

By combining these two types of features (topo-
logical and textual) we obtained three different
vector input representations consisting of 6 (only
topological features), 303 (only textual features)
and 309 (textual and topological) dimensions re-
spectively.

Finally, we created three ”ground truth” sets of
nodes in the graph for which pSI(n) is known. We
selected a balanced number of monosemous and
polysemous nouns, using the following sense in-
ventories: i) WordNet (14,659 examples); ii) DB-
pedia (17,041 examples); iii) WordNet and DBpe-
dia (31,701 examples).

Algorithms. We compared four algorithms:

• Random (Rnd): a random baseline which ran-
domly classifies the ambiguity of a node;

• Neural Network (NN): a neural network with
Softmax activation function in the output layer
and dropout (Srivastava et al., 2014);

3
https://nlp.stanford.edu/projects/glove/.



WordNet DBpedia WordNet ∪ DBpedia
Features dCor ρ PI weight ± std dCor ρ PI weight ± std dCor ρ PI weight ± std

to
po

lo
gi

ca
l

ccG−+ 0.593 0.185 0.0039±0.0001 0.614 0.228 0.0628±0.0051 0.513 0.027 0.0038±0.0008
vG−+ 0.602 0.203 0.0022±0.0003 0.597 0.194 0.0045±0.0010 0.513 0.025 0.0025±0.0003
eG−+ 0.597 0.194 0.0100±0.0016 0.600 0.200 0.0048±0.0008 0.514 0.027 0.0024±0.0001
ccG+− 0.606 0.212 0.0131±0.0013 0.579 0.159 0.0092±0.0016 0.492 -0.014 0.0049±0.0003
vG+− 0.623 0.247 0.0383±0.0035 0.580 0.159 0.0029±0.0009 0.495 -0.010 0.0013±0.0008
eG+− 0.619 0.237 0.0074±0.0010 0.583 0.167 0.0034±0.0013 0.497 -0.006 0.0054±0.0004

te
xt

ua
l

∆in 0.379 -0.242 0.0699±0.0036 0.399 -0.202 0.0231±0.0023 0.433 -0.134 0.0470±0.0027
∆out 0.400 -0.199 0.0101±0.0004 0.415 -0.170 0.0037±0.0015 0.431 -0.138 0.0120±0.0007
Gini 0.443 -0.114 0.0042±0.0004 0.460 -0.080 0.0035±0.0009 0.494 -0.013 0.0059±0.0006
# »

W (300 dimensions) Avg 0.0029±0.0004 Avg. 0.0030±0.0005 Avg 0.0028±0.0003
Min 0.0016±0.0003 Min 0.0005±0.0005 Min 0.0014±0.0003
Max 0.0077±0.0009 Max 0.0180±0.0013 Max 0.0123±0.0011

Table 3: Distance correlation dCor and Pearson coefficient ρ between polysemy and features and Per-
mutation Importance (PI) weights (NN estimator).

• Two ensemble-based learning algorithms,
namely AdaBoost (ABC) (Zhu et al., 2009) and
Gradient Boosting (GBC) (Friedman, 2001):
both have been shown to have high predictive
accuracy (Kotsiantis et al., 2006) and are good
competitors of neural methods, especially with
very large datasets.

Parameter selection. Based on the Area Under
Curve ROC (AUC) analysis (Kim et al., 2017),
NN parameters have been empirically set as fol-
lows: i) when testing only with topological fea-
tures (6 dimensions), we use 2 hidden layers with
4 and 2 neurons respectively and a dropout of 0.2
and 0.15; ii) when using only textual (303 dimen-
sions), or combined textual and topological fea-
tures (309 dimensions), we use 4 hidden layers,
with 128, 64, 32 and 8 neurons respectively and a
dropout of 0.3,0.25,0.2 and 0.15.

Results. We show in Table 2 the resulting preci-
sion, recall and F1 of the five systems across the
ground truths datasets and for the combinations
of features (see Section 3). The metrics are av-
eraged on five classification experiments, with a
random split (85% train, 10% validation and 5%
test) of the ground truth sets. As shown in Table
2, NN outperforms the others ensemble methods,
obtaining a F1 score around 0.70. The comparison
of performances across the three combinations of
features reveals that topological features are not
enough to build a model for polysemy classifica-
tion but can slightly boost the overall already com-
pelling performances of word embeddings-based
features.

In Table 3 we show the Person coefficient ρ and

the distance correlation dCor4, with the aim of an-
alyzing how each feature correlates with the poly-
semy observed in the three ground truth dictionar-
ies. We observed that the features with the high-
est correlation with polysemy are eG+− , ccG−+

and vG−+ (see Section 3). Additionally we re-
port the resulting weights of Permutation Impor-
tance (PI) applied to the NN system with the
aim of measuring how the performance decreases
when a feature is perturbed, by shuffling its val-
ues across training examples (Breiman, 2001).
We observed that the features which most influ-
enced the performances are ∆in(n) (WordNet and
WordNet∪DBpedia) and ccG−+ (DBpedia). Fur-
thermore, we found that although topological fea-
tures affect the performance only by a 1% in the
average, a number of topologically related fea-
tures, such as ccG−+ , vG−+ and eG+− are shown
to be indeed related with polysemy. In our fu-
ture work, we plan to create an ad-hoc ground-
truth sense dictionary, since especially WordNet
includes extremely fine-grained senses that do not
help validating our conjecture about reduced mu-
tual connectivity and contextual similarity of a
node’s neighborhood in case of monosemy.

4 Conclusion

The main contribution of this work is a new re-
source obtained by converting a large dataset of
is-a (hypernymy) relations automatically extracted
from the Web (such as WebIsADb) into a graph
structure. This graph, along with its accompany-
ing search tools, enables descriptive and predic-
tive analytics of emerging properties of termino-

4ρ and dCor are indexes to estimate how two distributions
are independent.



logical nodes. We used here our new resource to
investigate whether a node polysemy can be pre-
dicted from its topological features (i.e., connec-
tivity patterns) and textual features (meaning rep-
resentations from word embeddings). The results
of this preliminary study have shown that textual
features are good predictors of polysemy, while
topological features appear to be weaker predic-
tors even if they have a significant correlation with
the polysemy of the related node.
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José Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A
survey on vector representations of meaning. J. Ar-
tif. Intell. Res., 63:743–788.

Jose Camacho-Collados. 2017. Why we have switched
from building full-fledged taxonomies to simply de-
tecting hypernymy relations.

H. A. David. 1968. Gini’s mean difference rediscov-
ered. Biometrika, 55(3):573–575.

Stefano Faralli, Alexander Panchenko, Chris Biemann,
and Simone Paolo Ponzetto. 2017. The con-
trastmedium algorithm: Taxonomy induction from
noisy knowledge graphs with just a few links. In
Proc. of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 590–600. Association
for Computational Linguistics.

Stefano Faralli, Irene Finocchi, Simone Paolo
Ponzetto, and Paola Velardi. 2018. Efficient
pruning of large knowledge graphs. In Proc. of
the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden., pages 4055–4063.

Jerome H. Friedman. 2001. Greedy function approx-
imation: A gradient boosting machine. The Annals
of Statistics, 29(5):1189–1232.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proc. of COL-
ING, pages 539–545.

Sven Hertling and Heiko Paulheim. 2017. Webisa-
lod: Providing hypernymy relations extracted from
the web as linked open data. In The Semantic Web
- ISWC 2017 - 16th International Semantic Web
Conference, Vienna, Austria, October 21-25, 2017,
Proc., Part II, pages 111–119.

Chulwoo Kim, Sung-Hyuk Cha, Yoo An, and Ned Wil-
son. 2017. On roc curve analysis of artificial neural
network classifiers. In Florida Artificial Intelligence
Research Society Conference.

S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas.
2006. Machine learning: a review of classification
and combining techniques. Artificial Intelligence
Review, 26(3):159–190, Nov.

Matt Le, Stephen Roller, Laetitia Papaxanthos, Douwe
Kiela, and Maximilian Nickel. 2019. Inferring con-
cept hierarchies from text corpora via hyperbolic
embeddings.

Thomas Lin, Mausam, and Oren Etzioni. 2012. En-
tity linking at web scale. In Proc. of the Joint
Workshop on Automatic Knowledge Base Construc-
tion and Web-scale Knowledge Extraction (AKBC-
WEKEX), pages 84–88. Association for Computa-
tional Linguistics.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré
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torož, Slovenia, May 23-28, 2016.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proc. of
the 54th ACL (Volume 1: Long Papers), pages 2389–
2398. Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958, January.

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3).



Wentao Wu, Hongsong Li, Haixun Wang, and
Kenny Q. Zhu. 2012. Probase: A probabilistic tax-
onomy for text understanding. In Proc. of the 2012
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’12, pages 481–492,
New York, NY, USA. ACM.

Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie.
2009. Multi-class adaboost. Statistics and Its Inter-
face, 2(3):349–360.


