
Enhancing a Text Summarization System with ELMo

Claudio Mastronardo
DISI - University of Bologna, Italy

claudio.mastronardo@studio.unibo.it

Fabio Tamburini
FICLIT - University of Bologna, Italy

fabio.tamburini@unibo.it

Abstract

Text summarization has gained a consid-
erable amount of research interest due to
deep learning based techniques. We lever-
age recent results in transfer learning for
Natural Language Processing (NLP) us-
ing pre-trained deep contextualized word
embeddings in a sequence-to-sequence ar-
chitecture based on pointer-generator net-
works. We evaluate our approach on
the two largest summarization datasets:
CNN/Daily Mail and the recent Newsroom
dataset. We show how using pre-trained
contextualized embeddings on Newsroom
improves significantly the state-of-the-art
ROUGE-1 measure and obtains compara-
ble scores on the other ROUGE values.

1 Introduction

The amount of human generated data is outstand-
ing: every day we generate about 2 quintillion
bytes of unstructured data and this number is ex-
pected to grow. With such a huge amount of in-
formation, swiftly accessing and comprehending
large piece of textual data is becoming more and
more difficult. Automatic text summarization con-
stitutes a powerful tool which can provide a useful
solution to this problem.

In recent years, automatic text summarization
systems have gained a considerable amount of re-
search interest due to deep learning powered NLP
impressive results (Mikolov et al., 2013; Bah-
danau et al., 2015; Yang et al., 2017; Vaswani
et al., 2017; Józefowicz et al., 2016; Devlin et al.,
2019). Neural network (NN) based approaches
have always been considered data hungry tech-
niques because they often require a large amount
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of training data, but, in the latest years, several
works have made a huge contribution in this direc-
tion (Grusky et al., 2018; Nallapati et al., 2016a;
Napoles et al., 2012).

Text summarization systems can be divided into
two main categories: Extractive and Abstractive
(Shi et al., 2018). The first generate summaries
by purely copying the most representative chunks
from the source text (Dorr et al., 2003; Nallapati
et al., 2016b), while in the second summarization
algorithms make up summaries by using novel
phrases and words in order to rephrase and com-
press the information in the source text (Chopra
et al., 2016). Some works shed light on using both
approaches through hybrid neural architectures at-
tempting to gather the best characteristics of each
world (See et al., 2017; Khatri et al., 2017).

NLP has seen a tremendous amount of attention
after several deep learning based important results
(Lample et al., 2016; Józefowicz et al., 2016; Her-
mann et al., 2015). Most of them relied on the con-
cept of distributed representation of words, defin-
ing them as real-valued vectors learned from data
(Mikolov et al., 2013; Pennington et al., 2014; Bo-
janowski et al., 2017; Joulin et al., 2017). Recent
results were able to generate richer word embed-
dings by exploiting their linguistic context in order
to model word polysemy (Peters et al., 2018; Mc-
Cann et al., 2017; Peters et al., 2017).

In this paper, we build upon the work of See
et al. (2017) on the Pointer-Generator Network
for text summarization by integrating it with re-
cent advances in transfer learning for NLP with
deep contextualized word embeddings, namely an
ELMo model (Peters et al., 2018). We show that,
using pre-trained deep contextualized word em-
beddings, integrating them with pointer-generator
networks and learning the ELMo parameters for
combining the various model layers together with
the text summarization model, we can improve
substantially some of the ROUGE evaluation met-



rics. Our experiments were based on two datasets
commonly used to evaluate this task: CNN/Daily
Mail (Nallapati et al., 2016a) and Newsroom
(Grusky et al., 2018).

2 Related work

One of the first neural encoder-decoder ap-
proaches to text summarization has been presented
by Nallapati et al. (2016a) where they show that
an off-the-shelf encoder-decoder framework, used
for machine translation, already outperforms the
previous systems for text summarization. They
also augment input data by concatenating to classi-
cal word embeddings part-of-speech tags, named-
entity tags and tf-idf statistics. They leverage the
hierarchical attention mechanism where less im-
portant chunks of text are less attended with a
chunk-level mechanism attention.

Zhou et al. (2017) propose selective encoding
for text summarization by introducing a selective
gate network into the encoder with the purpose of
distilling salient information from source articles.
Then a second layer called “distilled representa-
tion” is constructed by multiplying the selective
gate to the hidden state of the first layer. Such
gate network can control information flow from
encoder to the decoder and select salient infor-
mation, boosting the performances of the sentence
summarization task.

Read-Again Encoding (Zeng et al., 2016) fol-
lows the human approach of reading several times
before writing a summary by using two LSTM
encoders reading the source article and a trans-
formed version of the first LSTM output respec-
tively. Another original approach is presented
by Xia et al. (2017) where they follow another
human-driven approach by first writing a draft and
then polishing it looking at the global context. In
an encoder-decoder framework there are two de-
coders, the first attends to encoder states and gen-
erates a draft while the second attends to both
the encoder and first decoder outputs generating a
summary by exploiting information from two con-
text vectors. This approach, called deliberation
network, boosted the performances for both text
summarization and machine translation.

Another set of approaches uses reinforcement
learning as in Chen and Bansal (2018), where they
use two sequence-to-sequence models. The first
is defined as an extractive model with the goal of
extracting salient sentences from the input source.

The second is an abstractive model which para-
phrases and compresses the extracted sentences
into a short summary. They make use of con-
volutional neural networks (ConvNet) to encode
tokens and train the two models by using stan-
dard policy gradient methods treating them as re-
inforcement learning agents.

Paulus et al. (2018) presented a new abstrac-
tive summarization model achieving state-of-the-
art on the New York Times dataset by intro-
ducing intra-temporal attention in both encoder
and decoder. They use a new objective function
by combining maximum-likelihood cross-entropy
loss and rewards from policy gradient reinforce-
ment learning in order to reduce the exposure bias
and train their architectures by directly optimizing
the ROUGE score.

Another research direction goes beyond RNNs
to avoid their computational and memory costs
by using ConvNet-based encoder-decoder models.
Kalchbrenner et al. (2016) adopt one-dimensional
convolutions stacking on top of the hidden repre-
sentation on the encoder/decoder ConvNet. Quasi-
Recurrent Neural Networks (Bradbury et al.,
2017) use encoders and decoders made of convo-
lutional layers and dynamic average pooling lay-
ers, requiring less amount of computational time
when compared with LSTMs. Several other ap-
proaches attempted to use ConvNets for NLP.

It is also relevant the transformer model pro-
posed in (Vaswani et al., 2017) which uses only
feed-forward NN and multi-head attention.

3 Datasets

All the experiments in this work have been con-
ducted on two datasets. The first, the CNN/Daily
Mail dataset (Nallapati et al., 2016a), has been cre-
ated by scraping news articles from the cnn.com
website and concatenating news highlights in or-
der to form a multi-sentence summary. It is com-
posed of about 300,000 examples. The second, the
recently released Newsroom dataset (Grusky et al.,
2018) consists of 1.3 million article-summaries
pairs. It is the largest and most diverse dataset
known in literature. Compared to CNN/Daily
Mail dataset, Newsroom has been created with
the explicit goal of summarizing articles over two
decades by using 38 major publishers as sources.
Authors in (Grusky et al., 2018) also demon-
strate that CNN/Daily Mail dataset is skewed
towards extractive summaries, while the News-



room dataset covers a wider range of summa-
rization styles, highly abstractive/extractive sum-
maries and several article-summary compression
ratios. For these reasons, even if we will provide
the results for both datasets, we will mainly com-
ment them only for the Newsroom dataset.

4 The Proposed Model

Our approach builds upon the work made by See
et al. (2017) on pointer-generator networks ap-
plied to text summarization. The pointer-generator
network is based on the architecture presented in
(Nallapati et al., 2016c).

4.1 Pointer-Generator Network

It is an encoder-decoder architecture where tokens
of a source text are fed one-by-one to an encoder
network (a single layer LSTM) which also gener-
ates a sequence of hidden states. The decoder net-
work (a single layer LSTM), at each step t receives
the embedding of the emitted word at time t − 1
and the current decoder’s hidden state. This ar-
chitecture makes use of Bahdanau attention (Bah-
danau et al., 2015) using:

eti = vT tanh (Whhi + Wsst + battn)

at = softmax
(
et
)

where st represents the decoder’s hidden state at
step t, hi represents the encoder’s hidden state at
timestep i and eti represents the weight given to hi
at decoder’s timestep t not yet normalized. Cap-
ital letters mark trainable parameters. The ten-
sor a represents a probability distribution over en-
coder’s hidden states and encodes how much to
attend each state in order to alleviate the encoder
from the responsibility of encoding all the infor-
mation into a fixed vector. The tensor a is used
to produce a weighted sum of the encoder hidden
states called h∗ which is concatenated to the de-
coder’s current hidden state making up the input
tensor for the LSTM cell that produces a distribu-
tion of probability over the vocabulary.

Pointer-generator networks extend this architec-
ture by leveraging ideas from pointer networks
(Vinyals et al., 2015): it is a special kind of archi-
tecture being able to point to a specific input token
and copy it from the source text to the output se-
quence. At each time-step t the network produces
a generation probability value pgen ∈ [0, 1] cal-
culated from the context vector h∗, the decoder’s
state st and the decoder’s input xt:

pgen = σ
(
wT
h∗h

∗
t + wT

s st + wT
xxt + bptr

)
again capital letters represent learnable parame-
ters and σ indicates the sigmoid function. pgen is
used as a soft switch to choose whether to gener-
ate a word from the network’s vocabulary or copy
a word from the source text. So, given pgen, the
probability of outputting a word w is:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w a
t
i

where Pvocab represents the probability value for
the word w at the output layer of the LSTM de-
coder,

∑
i:wi=w a

t
i is the sum of the attention val-

ues given to the hidden states at time twhose input
word was the specific wordw. In the case of an ex-
tremely low pgen, the decoder gives a higher prob-
ability value to the input words which produced
hidden states who had been attended the most.

At a given time-step t the loss value is computed
as the negative log-likelihood of the ground truth
word w∗

t for that time-step
losst = − logP (w∗

t )

and for a given sequence the loss value is com-
puted by averaging the losses for each word.

In order to cope with the common repetition
problem (Mi et al., 2016; Tu et al., 2016; Sankaran
et al., 2016), the coverage loss (Tu et al., 2016) is
used to penalize source-document words attended
too much. It is implemented by maintaining a cov-
erage vector ct: ct =

∑t−1
t′=0 a

t′ which tracks the
degree of coverage that words have received from
the attention mechanism so far. This leads to the
augmented version of the attention mechanism in-
cluding the coverage loss
eti = vT tanh

(
Whhi + Wsst + Wcc

t
i + battn

)
with Wc as learnable parameter. Hence, coverage
loss is computed by:

covloss t =
∑

imin
(
ati, c

t
i

)
in order to prevent repeated attention.

4.2 Deep Contextualized Word Embeddings

The original pointer-generator network does not
use pre-trained word embeddings, but it learns
128-dimensional word embeddings from scratch
during training. Even though learning special-
ized word embeddings for the summarization task
might seem a reasonable approach, we think that
using pre-trained word embeddings could improve
the overall network performance.

Following Peters et al. (2018) we adopt a trans-
fer learning approach by leveraging the power of
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Figure 1: The pointer-generator model. At each time-step the encoder reads a word and outputs an
hidden state. The decoder attends to encoder hidden states and generates the attention distribution. After
generating pgen, it weights and adds the attention distribution and the vocabulary distribution leading to
the final word distribution. Picture courtesy of See et al. (2017).

pre-trained deep contextualized word embeddings.
Embedding from Language Model (ELMo) is a
particular type of embedding where word repre-
sentation is a function of the entire input sequence.
ELMo trains a bidirectional language modeling ar-
chitecture inspired by Józefowicz et al. (2016) and
Kim et al. (2016), on a large corpus. In order
to compute the probability for the token tk, the
language model architecture computes a context-
independent token representation via a ConvNet
over characters and passes the output to a L-
layer bidirectional LSTM. An ELMo represen-
tation is the result of a weighted combination
of the hidden states of the language modeling
architecture. For each token tk, this architec-
ture computes a set of 2L + 1 representations:
Rk =

{
hLM
k,j |j = 0, . . . , L

}
where hLM

k,0 is the

output of the ConvNet token layer and hLM
k,j =[−→

h LM
k,j ;
←−
h LM

k,j

]
j > 0, for each bi-LSTM layer.

More generally, in order to use ELMo for a spe-
cific downstream task, word representations are
computed by a weighted sum of each intermedi-
ate network representation:

ELMo task
k = γ task ∑L

j=0 s
task
j hLM

k,j

where stask are softmax-normalized learnable

weights and γtask allows to scale the entire pro-
duced vector with respect to the downstream task.

Our method feeds ELMo embeddings into a
pointer-generator model: as the encoder reads
the source text, a pre-trained ELMo model gen-
erates contextualized word embeddings. Pointer-
generator encoder has two main sources to keep
track of what has been read: its own memory
and the inner information about past and follow-
ing words injected into the current word embed-
ding. We learn the stask and γtask weights during
training.

We used the “Original (5.5B)” ELMo embed-
dings1. The encoder gets 1024 dimensional em-
beddings which are fed into an LSTM cell of 512
neurons followed by a linear layer. Between the
encoder and the decoder there is a neural network
called reduce state with the aim of reducing the
dimensionality of the passed tensors. The decoder
is a bidirectional LSTM with size 256 followed by
two linear layers of 256 neurons. We use an at-
tention network with Bahdanau’s formula and the
coverage mechanism. Decoder’s vocabulary size
is set to the first most common 50,000 tokens in
the training set. Freezing the model from learn-
ing embeddings from scratch reduces the number

1https://allennlp.org/elmo

https://allennlp.org/elmo


Paper R-1 R-2 R-L
(See et al., 2017) 39.53 17.28 36.38
(Paulus et al., 2018) 41.16 15.75 39.08
(Gehrmann et al., 2018) 41.22 18.68 38.64
(Liu, 2019) 43.25 20.24 39.63
This work 38.96 16.25 34.32

Table 1: ROUGE metrics on CNN/Daily Mail test
set.

Paper R-1 R-2 R-L
(Grusky et al., 2018)
(Pointer-generator)

26.04 13.24 22.45

(Shi et al., 2018) 39.36 27.86 36.35
This work 40.49 27.15 34.11

Table 2: ROUGE metrics on the Newsroom test
set.

of parameters of 2,150,011. We trained our archi-
tecture on both CNN/Daily Mail and Newsroom
datasets using Adagrad as the optimization algo-
rithm (Duchi et al., 2011) with an initial learning
rate of 0.15 and the initial accumulator set to 0.1.
During training the batch size has been fixed to 8
and we run the decoder for at least 35 steps. As
pre-processing step we just lowercased and tok-
enized texts using the nltk python package. The
loss function remained unchanged since we used
the negative log-likelihood for the ground truth
word with coverage loss.

5 Experimental Results

We trained our model for 455,000 iterations on
CNN/Daily Mail and for 520,000 iterations on
Newsroom. The best performing models have
been tested on both CNN/Daily Mail and News-
room test sets and the ROUGE metrics are re-
ported in Table 1 and 2 respectively.

The proposed approach achieves state-of-the-art
ROUGE-1 value for the Newsroom dataset and
competitive values for ROUGE-2 and ROUGE-
L. ELMo addition causes an increase of +14.45,
+13.91 and +11.66 for the three metrics with re-
spect to basic pointer-generator from Grusky et al.
(2018). ELMo stask learned weights are, respec-
tively, 0.4140, 0.4690, 0.1169 and γtask = 0.35.
This shows that the model favours syntactic infor-
mation (captured at lower LSTM layers) instead
of semantic information when generating text em-
beddings. From a qualitatively point of view we

report some network generated summaries as sup-
plementary material2. As we can see the model
can generate fairly reasonable summaries, which
can differ from the ground truth but still represent
valid alternatives. This can explain the high value
for ROUGE-1, meaning that summaries’ words
have been covered anyway but in a different order
(causing a lower ROUGE-L).

6 Discussion and Conclusions

In this work we leveraged recent results in transfer
learning for NLP with deep contextualized word
embeddings in conjunction with pointer-generator
NN for automatic abstractive text summarization.
We noticed a considerable increase of model’s per-
formance in terms of the ROUGE score, achieving
state-of-the-art on the Newsroom dataset for the
ROUGE-1 metric. This is a dataset designed for
testing abstractive systems while the other dataset
(CNN/Daily Mail) contains summaries formed by
sentences extracted from the original texts and it is
more suitable for testing extractive systems. Then,
it is reasonable that we got improvements only
when using the Newsroom dataset.

Intrinsic, corpus-based metrics based on string
overlap, string distance, or content overlap, such
as BLEU and ROUGE, suffer from the need to
have a reference output provided by the gold stan-
dard corpus in order to evaluate the system out-
puts. That seems very problematic (e.g. see Gatt
and Krahmer 2018) because the reference sum-
mary is only one of the possible summaries that
humans can produce. By looking at the sup-
plementary material regarding some examples of
our system output, one can immediately recognize
that, even if very different from the reference one,
the summaries produced by the proposed system
are in most cases acceptable.

The definition of proper metrics capturing in the
right way the correctness of system outputs re-
mains, in our opinion, a critical open issue. As dis-
cussed also in the recent review by Chatzikoumi
(2019) about Machine Translation (MT) metrics,
“When reference translations are used [...] MT
outputs that are very similar to the reference trans-
lation are boosted and not similar MT outputs are
penalised even if they are good”, the so-called
“reference bias”. The same metrics are currently
used also in text summarization leading to similar
problems.

2https://bit.ly/2XUJvbd

https://bit.ly/2XUJvbd
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