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Abstract

Recent deep learning techniques have
shown significant improvements in
biomedical named entity recognition task.
However, such techniques are still facing
challenges; one of them is related to the
limited availability of annotated text data.
In this perspective, with a multi-task ap-
proach, simultaneously training different
related tasks enables multi-task models to
learn common features among different
tasks where they share some layers with
each other. It is desirable to used stacked
long-short term memories (LSTMs) in
such models to deal with a large amount
of training data and to learn the underlying
hidden structure in the data. However,
the stacked LSTMs approach also leads
to the vanishing gradient problem. To
alleviate this limitation, we propose a
multi-task model based on convolution
neural networks, stacked LSTMs, and
conditional random fields and use embed-
ding information at different layers. The
model proposed shows results comparable
to state-of-the-art approaches. Moreover,
we performed an empirical analysis of the
proposed model with different variations
to see their impact on our model.

1 Introduction

Named entity recognition (NER) consists in rec-
ognizing chunks of text and labelling them with
predefined categories (e.g., person name, organi-
zation, location, etc). NER is an information ex-
traction task and has many applications for in-
stance in co-reference resolution, question an-
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swering systems, machine translation, informa-
tion retrieval etc (Chieu and Ng, 2002). NER is
also performed on biomedical data where it in-
volves recognizing biomedical concepts (e.g., cell,
chemical, drug, disease, etc) and classifying them
into predetermined categories. This is referred as
biomedical named entity recognition (BioNER).
Large amounts of medical data are available as
free, unstructured text and the quantity of annu-
ally generated biomedical data like books, scien-
tific papers, and other publications makes it chal-
lenging for physicians to stay up to date.

Moreover, biomedical documents are more
complex than normal texts and the names of
the entities show peculiar characteristics. Long
multi-word expressions (10-ethyl-5-methyl-5,10-
dideazaaminopterin), ambiguous words (TNF al-
pha can be used for both DNA and Protein)
(Gridach, 2017), spelling alternations (e.g., 10-
Ethyl-5-methyl-5,10-dideazaaminopterin vs. 10-
EMDDA) make the BioNER task even more chal-
lenging (Giorgi and Bader, 2018). BioNER is also
an important preliminary task for other tasks like
the extraction of relations between entities (e.g.,
chemical induced disease relation, drug-drug in-
teraction, . . . ).

Recent applications of deep learning in BioNER
minimize manual feature engineering process and
at the same time produce promising results. Deep
learning is now the state-of-the-art technique but,
due to the complex structure of biomedical text
data, deep learning models have difficulties in per-
forming efficiently. Moreover, these systems re-
quire large amounts of input data while the avail-
able annotated biomedical data are not enough to
train these systems effectively. Manually generat-
ing annotated biomedical text data is an expensive
and time-consuming job. In order to address this
limitation, one solution is to take advantage of a
multi-task learning approach. Multi-task learning
(MTL) involves training simultaneously different



but related tasks together. Such an approach has
shown significant improvements in different fields.

In this paper, we propose a multi-task model
(MTM-CW) using convolutional neural networks
(CNN) (dos Santos and Guimarães, 2015), stacked
layers of Bidirectional long-short term memories
(BiLSTM), and conditional random fields (CRFs).
Furthermore, we have conducted an empirical
analysis of the impact of different word input rep-
resentation to our model.

The rest of the paper is organized as follows;
Section 2 gives a brief background of the multi-
task learning followed by Section 3 where our
multi-task model (MTM-CW) is discussed. Ex-
perimental setup is presented in Section 4 which
is followed by the results and discussion (Section
5). Section 6 concludes and presents possible fu-
ture research directions.

2 Multi-task Learning

In general, deep learning model performance
highly depends on the amount of annotated data
available. It performs better when large amount
of data is available. Unfortunately, in different
biomedical tasks only a limited quantity of an-
notated text data is available and in this case
deep learning models have difficulties to general-
ize well. Moreover, manually annotating new data
is a time consuming job and this issue can be re-
duced by using two methods: transfer learning and
multi-task learning.

In transfer learning, the model is partially
trained on an auxiliary task and is then reused on
the main task. This enables the model to fine tune
the weights of the layers which are learned during
the training on the auxiliary task. This helps the
model to generalize well on the main task, which
implies learning generalized features between the
auxiliary and the main task. This method learns
and transfers shallow features from one domain to
another domain (Luong et al., 2016).

On the other hand, multi-task learning (MTL)
is an approach where different related tasks are
trained simultaneously. Unlike transfer learn-
ing, multi-task learning optimizes the model un-
der construction concurrently. In MTL approach,
some of the layers in the model are shared among
different tasks while keeping some layers task-
specific. Training jointly on related tasks helps the
multi-task model to learn common features among
different tasks by using shared layers (Bansal et

al., 2016). The task-specific layers, usually the
lower layers, learn features that are more related to
the current task. MTL lowers the chances of over-
fitting as the model has to learn the common rep-
resentation among all tasks. MTL has been widely
adopted in many different domains (Luong et al.,
2016).

Crichton et al. (2017) proposed a multi-task
model (MTM) based on CNN to perform BioNER.
However, they only focused on the word level fea-
tures ignoring the character level ones. Although
word level features give much information about
the entities, character level features help to extract
common sub-word structures among the same en-
tities. Moreover, depending solely on the word
level features can lead to out-of-vocabulary prob-
lems when a specific word is not found in the
pre-trained word embedding. Wang et al. (2019)
also performed BioNER using different multi-task
models. They found that the MTM with the word
level features and extraction of the character level
features using BiLSTM enhances performance of
the model. They concluded that the character level
feature should be considered for the BioNER task.
A similar model is proposed by Mehmood et al.
(2019) where, apart from single shared BiLSTM,
they introduce the task-specific BiLSTM as well
to learn the features that are more specific to the
task. Introduction of task-specific BiLSTM and
use of CNN instead of BiLSTM at character level
showed performance improvement.

3 Our Proposal

Neural networks work on a concept of hierarchical
feature learning (Xiao et al., 2018). Hierarchical
feature learning is done as sequences propagates
through the network (LeCun et al., 2015). Deep
learning can learn the complex hierarchical struc-
ture of the sequence with multiple layers. More-
over, it is always desirable to stack LSTMs when
a large amounts of training data is available (Li
et al., 2018). Such intuition can be noticed in the
model proposed by Mehmood et al. (2019) where
increasing the layer of BiLSTM leads to perfor-
mance enhancement. However, moving towards
deep LSTMs network can causes gradient vanish-
ing problem as well (Li et al., 2018).

To tackle this issue we are proposing a model
which induces the input information at different
layers. Our proposed multi-task model with char-
acter and word input representations (MTM-CW)



propagates input embedding information along
different shared layers as shown in Figure 1. This
not only helps lower layers to learn the complex
structure from encoded representation of the pre-
vious layer but also considers inputs embeddings
as well to overcome the gradient vanishing prob-
lem in stacked LSTMs.

Furthermore, using stacked BiLSTMs will help
hidden states of BiLSTM to learn hidden struc-
ture of the data presented at different level. This
will help BiLSTM to learn features at a more ab-
stract level. Apart from the shared stacked BiL-
STMs, our model also uses task-specific BiLSTM
as well to extract task-specific features. Further-
more, we use CNN to extract features at character
level. Many of the previous approaches have used
CNN at character level (dos Santos et al., 2015;
Collobert et al., 2011) due to its finer ability of
features extraction. CNN learns global level fea-
tures from local level features. This enables CNN
to extract more hidden features. More specifically,
lower layers in our proposed MTM-CW model are
task-specific. So for the specific task, both shared
layers and layers belonging to that specific task are
activated.
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Figure 1: Proposed MTM-CW Model where
dashed arrows show skip connections

Finally, we use CRFs for output labeling. CRFs
have the ability to tag the current token by consid-
ering neighboring tags at sentence level (Huang et
al., 2015). Yang et al. (2018) performed experi-
ments comparing CRF and Softmax and found out
that CRF produces better results compared to Soft-
max.

An alternative training approach was adopted
for the training phase. Let suppose we have
D1,D2,..., Dt training sets, related to the T1, T2,
..., Tt tasks respectively. During training, a train-
ing set Di is selected randomly and both shared
layers and layers specific to the corresponding task
Ti are activated. Every task has its own optimizer
so during training only the optimizer specific to
the task Ti is activated and the loss function re-
lated to that optimizer is optimized. It means that
the parameters of the shared layers and of the task-
specific layers are changed during the training of
the specific task. Optimizing parameters of the
shared layers for all the tasks helps the model to
find the common features among different tasks.

4 Experiments

We performed experiments on the 15 datasets
which were also used by Crichton et al. (2017),
Wang et al. (2019), and Mehmood et al. (2019).
The bio-entities in these datasets are Chemical,
Species, Cell, Gene/Protein, Cell Component, and
Disease1. Descriptions of the datasets can be
found in Crichton et al. (2017). Moreover, to rep-
resent words, we use domain-specific pre-trained
word embeddings since generic word embeddings
can cause a high rate of out-of-vocabulary words.
In particular, we use WikiPubMed-PMC word em-
bedding which is trained on a large set of the
PubMedCentral(PMC) articles and PubMed ab-
stracts as well as on English Wikipedia articles
(Giorgi and Bader, 2018). On the other hand,
character embedding is initialized randomly while
orthographic (case) embedding is represented by
the identity matrix where each diagonal 1 repre-
sents the presence of a word’s orthographic fea-
ture. Moreover, we analyse the effect of different
input representations (word level, character level,
and case level) of a word on the performance of
our proposed architecture. Furthermore, this pa-
per reports the average F1-score where each ex-
periment is run for 10 times. We use the Nadam

1The datasets can be found at the following link
https://github.com/cambridgeltl/MTL-Bioinformatics-2016



optimizer in our model and use CNN with a fil-
ter size of 30 while each LSTM in the model con-
sists of 275 units and the experiment is run for 50
epochs and early stop is set to 10 epochs.

5 Results and Discussion

In Table 1 we compare the results produced by
our model with state-of-the-art models (Wang et
al., 2019; Mehmood et al., 2019). We can see a
substantial improvement in the F1-score by MTM-
CW compared to these models. However, to ob-
serve whether connecting embedding layers to the
middle layers has truly contributed to the perfor-
mance of the model, we made a variation in the
model and dropped the skip connections coming
from embedding layers (refer to Figure 1). Drop-
ping these skip connections makes our model sim-
ilar to the model by Mehmood et al. (2019) where
we have introduced another layer of shared BiL-
STM. The effect of such variation is reported in
Table 2 where it can be noted that few datasets
show moderate performance increase while for
most of them performance degrades. This sup-
ports our intuition that passing embedding layer
information to the lower layers has positive im-
pact on the model. Moreover, it is interesting that,
even after dropping those skip connections, our
model is still able to perform better compared to
state-of-the-art models. This suggests that, with
increasing size of training examples, more layers
of LSTM should be considered (Li et al., 2018).
For this reason, the proposed model by Mehmood
et al. (2019) performed better compared to model
proposed by Wang et al. (2019) which used single
layer of LSTM.

We then extended our experiments by introduc-
ing orthographic-level representation of a word in
our model. Dugas and Nichols (2016) Segura-
Bedmar et al. (2015) Huang et al. (2015) have
shown that orthographic-level information can im-
prove model’s performance. In addition, statis-
tical models (e.g. CRF at the output layer) are
also highly dependent on hand-crafted features
(Limsopatham and Collier, 2016). In this work,
the orthographic-level feature includes informa-
tion on the structure of the word, i.e. either the
word is starting with a capital letter followed by
small letters or all the letters in the word are
capital or contain digits, etc. Table 2 reports
the comparison between MTM-CW and its vari-
ant with orthographic-level features (we name it

Datasets Wang et al. Mehmood et al. MTM-CW
AnatEM 86.04 86.99 87.50
BC2GM 78.86 80.82 81.57
BC4CHEMD 88.83 87.39 89.24
BC5CDR 88.14 87.85 88.54
BioNLP09 88.08 88.74 88.52
BioNLP11EPI 83.18 84.75 85.36
BioNLP11ID 83.26 87.65 87.19
BioNLP13CG 82.48 84.25 84.94
BioNLP13GE 79.87 79.82 80.91
BioNLP13PC 88.46 88.84 89.16
CRAFT 82.89 83.15 85.23
Ex-PTM 80.19 80.95 81.72
JNLPBA 72.21 74.05 72.10
linnaeus 88.88 87.79 88.12
NCBI-disease 85.54 85.66 85.07

Table 1: Multi-task Models Comparison where
CW represents character and word respectively

case, MTM-CW-Case). We observe that, for some
datasets, orthographic-level features moderately
improved the results. Thus, we can conclude that
orthographic-level features might help the model
to implicitly learn hidden features at an ortho-
graphic level which could be helpful for some en-
tities. However, for simplicity we are limiting our
work to explicitly representing the word-level fea-
tures; thus we stick to the character-level represen-
tation and the word itself. We also replaced CRF
with Softmax at the output layer to see the impact
of both methods on predicting the output label of
the entities. Table 2 also depicts the comparison
of our proposed model with softmax (MTM-CW-
Softmax) and CRF (proposed MTM-CW) at the
output layer and model with CRF produce better
results compared to the model with Softmax.

To statistically evaluate the results obtained by
different variants of our model we perform the
Friedman test (Zimmerman and Zumbo, 1993).
We also analyse the pairwise comparison of differ-
ent models to see which model is statistically bet-
ter than the other. The graphical representation of
the pairwise comparison is shown in Figure 2 as it
can be seen in variant of the model proposed with
softmax (MTM-CW-Softmax represented as just
Softmax) which is statistically worse compared to
the others and to other variants of the model. Fig-
ure 3 shows the post-hoc Conover Friedman test
where it can be seen that the difference between
results produced by all the models is significant
with different p values.



Datasets MTM-CW MTM-CW (w/out MTM-CW MTM-CW
skip connections) Case Softmax

AnatEM 87.50 86.94 87.37 86.36
BC2GM 81.57 81.29 81.66 80.04
BC4CHEMD 89.24 87.44 89.13 86.88
BC5CDR 88.54 88.11 88.64 87.39
BioNLP09 88.52 89.31 88.61 88.18
BioNLP11EPI 85.36 85.01 85.04 84.16
BioNLP11ID 87.19 88.16 87.76 87.28
BioNLP13CG 84.94 84.61 84.86 84.00
BioNLP13GE 80.91 82.28 80.16 80.49
BioNLP13PC 89.16 89.04 89.26 88.37
CRAFT 85.23 83.44 85.04 82.86
Ex-PTM 81.72 82.40 81.50 80.64
JNLPBA 72.10 72.02 72.21 70.31
linnaeus 88.12 88.69 88.74 88.33
NCBI-disease 85.07 85.12 85.56 84.36

Table 2: Comparison between the Results of Different Variants of the Model Proposed

Figure 2: Pairwise Models Comparison w.r.t to Friedman Test

Figure 3: Post-hoc Conover Friedman Test (NS
represents not significant)

6 Conclusion and Future Work

In this paper we showed that the BioNER per-
formance can be drastically improved by using
a multi-task approach. We showed that using
stacked LSTMs in such models are effective to
learn hidden structure of the data. Moreover, to
overcome the vanishing gradient problem in using

stacked LSTMs is addressed by passing embed-
ding information layers to layers. We showed that
our model outperforms in F1-score compared to
the state-of-the-art models.

For future work, we will extend the multi-task
approach for relation extraction task. In such ap-
proach, BioNER can be used as an auxiliary task
while keeping relation extraction task as the main
task in the multi-task approach.
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