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Abstract

Since a large amount of medical treat-
ments requires the assumption of multi-
ple drugs, the discovery of how these in-
teract with each other, potentially causing
health problems to the patients, is the sub-
ject of a huge quantity of documents. In
order to obtain this information from free
text, several methods involving deep learn-
ing have been proposed over the years. In
this paper we introduce a Recurrent Neu-
ral Network-based method combined with
the Self-Interaction Attention Mechanism.
Such a method is applied to the DDI2013-
Extraction task, a popular challenge con-
cerning the extraction and the classifica-
tion of drug-drug interactions. Our fo-
cus is to show its effect over the tendency
to predict the majority class and how it
differs from the other types of attention
mechanisms.

1 Introduction

Given the increase of publications regarding side
effects, adverse drug reactions and, more in gen-
eral, how the assumption of drugs can cause risks
of health issues that may affect patients, a large
quantity of free-text containing crucial informa-
tion has become available. For doctors and re-
searchers, accessing this information is a very de-
manding task, given the number and the complex-
ity of such documents.

Hence, the automatic extraction of Drug-Drug
Interactions (DDI), i.e. situations where the simul-
taneous assumption of drugs can cause adverse
drug reactions, is the goal of the DDIExtraction-
2013 task (Segura-Bedmar et al., 2014). DDIs
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have to be extracted from a corpus of free-text sen-
tences, combining machine learning with natural
language processing (NLP).

Starting from the introduction of word embed-
ding techniques like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) for
word representation, Recurrent Neural Networks
(RNN) and in particular Long Short Term Mem-
ory networks (LSTM) have become the state-of-
the-art technology for most of natural language
processing tasks like text classification or relation
extraction.

The main idea behind the attention mechanism
(Bahdanau et al., 2014) is that the model “pays
attention" only to the parts of the input where
the most relevant information is present. In our
case, this mechanism assigns a higher weight to
the most influential words, i.e. the ones which de-
scribe an interaction between drugs.

Several attention mechanisms have been pro-
posed in the last few years (Hu, 2018), in particu-
lar self-interaction mechanism (Zheng et al., 2018)
applies attention with a different weight vector for
each word in the sequence, producing a matrix that
represents the influence between all word pairs.
We consider this information very meaningful, es-
pecially in a task like this one where we need to
discover connections between pairs of words.

In this paper we show how self-interaction at-
tention improves the results in the DDI-2013 task,
comparing it to other types of attention mecha-
nisms. Given that this dataset is strongly unbal-
anced, the main focus of the analysis is how each
attention mechanism deals with the tendency to
predict the majority class.

2 Related work

The best performing teams in the DDI-2013 orig-
inal challenge (Segura-Bedmar et al., 2014) used
SVM (Björne et al., 2013) but, more recently,
Convolutional Neural Networks (CNN) (Liu et al.,



2016), (Quan et al., 2016) and mostly Recurrent
Neural Networks (RNN) have proved to be the
new state of the art.

Kumar and Anand (2017) propose a double
LSTM. The sentences are processed by two differ-
ent bidirectional LSTM layers: one followed by a
max-pooling layer and the other one by a custom
made attention-pooling layer that assign weights
to words. Furthermore Zhang et al. (2018) design
a multi-path LSTM neural network. Three paral-
lel bidirectional LSTM layers process the sentence
sequence and a fourth one processes the shortest
dependency path between the two candidate drugs
in the dependency tree. The output of these four
layers is merged and handled by another bidirec-
tional LSTM layer.

Zheng et al. (2017) apply attention directly
to word vectors, creating a “candidate-drugs-
oriented" input which is processed by a single
LSTM layer.

Yi et al. (2017) use a RNN with Gated Re-
current Units (GRU) (Cho et al., 2014) instead
of LSTM units, followed by a standard attention
mechanism, and exploits information contained in
other sentences with a custom made sentence at-
tention mechanism.

Putelli et al. (2019) introduce an LSTM model
followed by a self-interaction attention mecha-
nism which computes, for each pair of words, a
vector representing how much it is related to the
other. These vectors are concatenated into a sin-
gle one which is passed to a classification layer.
In this paper, starting from the results reported in
Putelli et al. (2019), we improve the input rep-
resentation, the negative filtering and extend the
analysis of self-interaction attention, comparing it
to more standard attention mechanisms.

3 Dataset description

This dataset was released for the shared challenge
SemEval 2013 - Task 9 (Segura-Bedmar et al.,
2014) and contains annotated documents from the
biomedical literature. In particular, there are two
different sources: abstracts from MEDLINE re-
search articles and texts from DrugBank.

Every document is divided into sentences and,
for each sentence, the dataset provides annotations
of every drug mentioned. The task requires to clas-
sify all the possible

(
n
2

)
pairs of n drugs mentioned

in the given sentences. The dataset provides the
instances with their classification value.

There are five different classes: unrelated:
there is no relation between the two drugs men-
tioned; effect: the text describes the effect of
the drug-drug interaction; advise: the text rec-
ommends to avoid the simultaneous assumption
of two drugs; mechanism: the text describes an
anomaly of the absorption of a drug, if assumed si-
multaneously with another one; int: the text states
a generic interaction between the drugs.

4 Pre-processing

The pre-processing phase exploits the
“en_core_web_sm" model of spaCy1, a Python
tool for Natural Language Processing, and it is
composed by these steps:

Substitution: after tokenization and POS-
tagging, the drug mention tokens are re-
placed by the standard terms PairDrug1 and
PairDrug2. In the particular case when the pair
is composed by two mentions of the same drug,
these are replaced by NoPair. Every other drug
mentioned in the sentence is replaced with the
generic name Drug.

Shortest dependency path: spaCy produces
the dependency tree associated to the sentence,
with tokens as nodes and dependency relations be-
tween the words as edges. Then, we calculate
the shortest path in the dependency tree between
PairDrug1 and PairDrug2.

Offset features: given a word w in the sen-
tence, D1 is calculated as the distance (in terms of
words) from the first drug mention, divided by the
length of the sentence. Similarly, D2 is calculated
as the distance from the second drug mention.

4.1 Negative instance filtering

The DDI-2013 dataset contains many “negative
instances", i.e. instances that belong to the un-
related class. In an unbalanced dataset, machine
learning algorithms are more likely to classify a
new instance over the majority class, leading to
poor performance for the minority classes (Weiss
and Provost, 2001). Given that previous stud-
ies (Chowdhury and Lavelli, 2013; Kumar and
Anand, 2017; Zheng et al., 2017) have demon-
strated a positive effect of reducing the number
of negative instances on this dataset, we have fil-
tered out some instances from the training-set rely-
ing only on the structure of the sentence, starting
from the pairs of drugs with the same name. In

1https://spacy.io



addition to this case, we can filter out a candidate
pair if the two drug mentions appear in coordinate
structure, checking the shortest dependency path
between the two drug mentions.If they are not con-
nected by a path, i.e. there is no grammatical re-
lation between them, the candidate pair is filtered
out.

While other works like (Kumar and Anand,
2017) and (Liu et al., 2016) apply custom-made
rules for this dataset (such as regular expressions),
our choice is to keep the pre-processing phase as
general as possible, defining an approach that can
be applied for other relation extraction tasks.

5 Model description

Figure 1: Model architecture

In this section we present the LSTM-based
model (Figure 1), the self-attention mechanism
and how it is used for relation extraction.

5.1 Embedding

Each word in our corpus is represented with a vec-
tor of length 200. These vectors are obtained with
a Word2Vec (Mikolov et al., 2013) fine-tuning.
We initialized a Word2Vec model with the vec-
tors obtained by the authors of McDonald et al.
(2018) the same algorithm over PubMed abstracts
and PMC texts, and trained our Word2Vec model
using the DDI-2013 corpus.

PoS tags are represented with vectors of length
4. These are obtained applying the Word2Vec
method to the sequence of PoS tags in our corpus.

5.2 Bidirectional LSTM layer

A Recurrent neural network is a deep learning
model for processing sequential data, like natu-
ral language sentences. Its issues with vanishing
gradient are avoided using LSTM cells (Hochre-
iter and Schmidhuber, 1997; Gers et al., 2000),

which allow to process longer and more complex
sequences. Given x1, x2 . . . xm, ht−1 and ct−1

where m is the length of the sentence and xi ∈ Rd

is the vector obtained by concatenating the embed-
ded features, ht−1 and ct−1 are the hidden state
and the cell state of the previous LSTM cell (h0
and c0 are initialized as zero vectors), new hidden
state and cell state values are computed as follows:

ĉt = tanh(Wc[hti , xt] + bc)

it = σ(Wi[hti , xt] + bi)

ft = σ(Wf [hti , xt] + bf )

ot = σ(Wo[hti , xt] + bo)

ct = it ∗ ĉt + ft ∗ ct−1

ht = tanh(ct) ∗ ot

with σ being the sigmoid activation function and ∗
denoting the element wise product. Wf , Wi, Wo,
Wc ∈ R(N+d)×N are weight matrices and bf , bi,
bo, bc ∈ RN are bias vectors. Weight matrices and
bias vectors are randomly initialized and learned
by the neural network during the training phase. N
is the LSTM layer size and d is the dimension of
the feature vector for each input word. The vectors
in square brackets are concatenated.

Bidirectional LSTM not only computes the in-
put sequence in the order of the sentence but also
backwards (Schuster and Paliwal, 1997). Hence,
we can compute hr using the same equations de-
scribed earlier but reversing the word sequence.
Given ht computed in the sentence order and hrt in
the reversed order, the output of the t bidirectional
LSTM cell hbt is the result of the concatenation of
ht and hrt .

5.3 Sentence representation and attention
mechanisms

The LSTM layers produce, for each word input
wi, a vector hi ∈ Rn which is the result of com-
puting every word from the start of the sentence
to wi. Hence, given a sentence of length m, hm
can be considered as the sentence representation
produced by the LSTM layer. So, for a sentence
classification task, hm can be used as the input to
a fully connected layer that provides the classifi-
cation.

Even if they perform better than simple RNNs,
LSTM neural networks have difficulties preserv-
ing dependencies between distant words (Raffel
and Ellis, 2015) and, especially for long sen-
tences, hm may not be influenced by the first



words or may be affected by less relevant words.
The Attention mechanism (Bahdanau et al., 2014;
Kadlec et al., 2016) deals with these problems tak-
ing into consideration each hi, computing weights
αi for each word contribution:

ui = tanh(Wahi + ba)
αi = softmax(ui) = exp(ui)/

∑n
k=1 exp(uk)

where Wa ∈ RN×N and ba ∈ RN .
The attention mechanism outputs the sentence

representation

s =
∑m

i=1 αihi

The Context Attention mechanism (Yang et
al., 2016) is more complex. In order to enhance
the importance of the words for the meaning of
the sentence, this uses a word level context vector
uw of additional weights for the calculation of αi:

αi = softmax(uTwui)

As proposed by Zheng et al. (2018), Self-
Interaction Attention mechanism uses multiple
vi for each word wi instead of using a single one.
This way, we can extract the influence (called ac-
tion) between the action controller wi and the rest
of the sentence, i.e. each wk for k ∈ {1,m}. The
action of wi is calculated as follows:

si =
∑m

k=1 αi,kui
αik = exp(vTk ui)/

∑m
j=1 exp(v

T
j ui)

with ui defined in the same way as the standard
attention mechanism.

5.4 Model architecture
In order to obtain also in this case a context vector
representing the sentence, in Zheng et al. (2018)
each si is aggregated into a single vector s as its
average, maximum or even applying another stan-
dard attention layer. In our model we choose to
avoid any pooling operations and to concatenate
instead each si, creating a flattened representation
(Du et al., 2018) and passing it to the classification
layer.

The model designed (see Figure 1) and tested
for the DDI-2013 Relation Extraction task in-
cludes the following layers: three parallel em-
bedding layers: one with pre-trained word vec-
tors, one with pre-trained PoS tag vectors and one
that calculates the embedding of the offset fea-
tures; two bidirectional LSTM layers that pro-
cess the word sequence; the self-interaction at-
tention mechanism; a fully connected layer with

5 neurons (one for each class) and softmax acti-
vation function that provides the classification.

In our experiments, we compare this model
with similar configurations obtained substituting
the self-interaction attention with the standard at-
tention layer introduced by Bahdanau et al. (2014)
and the context-attention of Yang et al. (2016).

6 Results and discussion

Our models are implemented using Keras library
with Tensorflow backend. We perform a sim-
ple random hyper-parameter search (Bergstra and
Bengio, 2012) in order to optimize the learning
phase and avoiding overfitting, using a subset of
sentences as validation set.

6.1 Evaluation

We have tested our two models with different in-
put configurations: using only word vectors, using
word and PoS tag vectors or adding also offset fea-
tures.

In Table 1 we show the recall measure for each
input configuration. The effect of self-interaction
is also verified through the Friedman test (Fried-
man, 1937): for all input configurations, the model
with self-interaction attention performs better than
the other configurations with a level of confidence
equals to 99%. Similarly, the simple Attention
Mechanism obtains better performances with re-
spect to the Context Attention with confidence of
99% (see Figure 2).

In Table 2 we show the F-Score for each class of
the dataset. The overall performance of the config-
uration including word vectors, PoS tagging and
offset features as input is considered also in Ta-
ble 3.

In Table 3 we compare our results with other
state-of-the-art methods and compare the overall
performance of the three attention mechanisms.
The Context-Att obtains results similar to those
of most of the approaches based on Convolution
Neural Networks and worse than most of LSTM-
based models.

In terms of F-Score, Word Attention LSTM
(Zheng et al., 2017) outperforms our approach and
the other LSTM-based models by more than 4%.
As we discussed in (Putelli et al., 2019), we have
tried to replicate their model but we could not ob-
tain the same results. Furthermore, their attention
mechanism aimed to creating a “candidate-drugs-
oriented" input did not improve the performance.



Input No Attention Context-Att Attention Self-Int-Att
Word 64.44 65.32 66.60 69.72
Word+Tag 65.37 65.20 67.57 68.95
Word+Tag+Offset 60.67 65.82 69.47 70.88

Table 1: Overall recall (%) comparison with different attention mechanisms and input configurations.
For each input configuration, the best recall is marked in bold.

Effect Mechanism
Input No Att C-Att Att Self-Int No Att C-Att Att Self-Int
Word 0.68 0.71 0.72 0.70 0.69 0.72 0.72 0.70
Word+Tag 0.67 0.70 0.70 0.69 0.71 0.73 0.74 0.70
Word+Tag+Offset 0.65 0.70 0.70 0.69 0.68 0.73 0.74 0.76

Advise Int
Input No Att C-Att Att Self-Int No Att C-Att Att Self-Int
Word 0.77 0.71 0.74 0.78 0.53 0.49 0.45 0.45
Word+Tag 0.78 0.73 0.77 0.77 0.55 0.50 0.45 0.43
Word+Tag+Offset 0.74 0.75 0.79 0.78 0.50 0.52 0.50 0.49

Table 2: Detailed F-Score comparison with different configurations and attention mechanisms. For each
class, the best F-Score is marked in bold.

Method P(%) R(%) F(%)
UTurku (SVM) 73.2 49.9 59.4
FBK-irst (SVM) 64.6 65.6 65.1
Zhao SCNN 72.5 65.1 68.6
Liu CNN 75.7 64.7 69.8
Multi-Channel 76.0 65.3 70.2
Context-Att 75.9 65.8 70.5
Joint-LSTMs 73.4 69.7 71.5
Self-Int 73.0 70.9 71.9
GRU 73.7 70.8 72.2
Attention 75.6 69.5 72.4
SDP-LSTM 74.1 71.8 72.9
Word-Att LSTM 78.4 76.2 77.3

Table 3: Comparison with overall precision (P),
recall (R) and F-Score (F) of other state-of-the-art
methods: , ordered by F. Our models are marked
in bold, results higher than ours are marked in red.

7 Conclusions and future work

We have compared the self-interaction attention
model to alternative configurations using the stan-
dard attention mechanism introduced by Bah-
danau et al. (2014) and the context-attention mech-
anism of Yang et al. (2016).

Our experiments show that the self-interaction
mechanism improves the performance with re-
spect to other versions, in particular reducing the

Figure 2: Recall comparison for mod-
els with different attention mechanisms for
Word+Tag+Offset. The continue arrow means
99% confidence, while the dashed arrow means
95%.

tendency of predicting the majority class, hence
decreasing the number of false negatives. The
standard attention mechanism produces better re-
sults than the context attention.

As future work, our objective is to exploit or
adapt the Transformer architecture (Vaswani et al.,
2017), which has become quite popular for ma-
chine translation tasks and relies almost only on
attention mechanisms, and apply it to relation ex-
traction tasks like DDI-2013.

Another direction includes the exploitation of a
different pre-trained language modeling. For ex-
ample, BioBERT (Lee et al., 2019) obtains good
results for several NLP tasks like Named Entity
Recognition or Question Answering and we plan
to apply it to our task.
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