CEUR-WS.org/Vol-2482/paper22.pdf

Generating rule suggestions in PBE data transformation

Kuldeep Reddy
Southeast University
Nanjing, China
brkuldeep@gmail.com

Abstract

This paper presents an idea for generating
rule suggestions in performing programming-
by-example data transformation operations.
Data transformation is an important opera-
tion in data integration that is carried out
frequently in many application domains, its
programming-by-example variant consists of a
grammar from which a rule is built. It is then
used in creating a new data item from an ex-
isting data item by searching for occurrence
of pattern data item and replacing it with a
new data item defined in the rule. This pa-
per proposes two new components in this sys-
tem a) generating suggestions for new rules
based on rules which have been given as in-
put, in particular differences between struc-
tures in rule sequences b) suggesting rule mod-
ifications that would include an item user is
interested in, with the final modified ruleset
as a way to provide explanation to user why-
not question.

1 Introduction

Data integration Data integration involves combining
data residing in different sources and providing users
with a unified view of them [1]. Various compo-
nents of typical data integration process include - data
quality assessment, record matching, schema match-
ing, data transformation, data provenance assessment,
data warehousing etc.

Database usability primarily concerns with devel-
oping techniques to make traditional databases more
accessible to the users [3]. Examples of visual inter-
faces include faceted search, template based search,

Copyright © CIKM 2018 for the individual papers by the papers'
authors. Copyright © CIKM 2018 for the volume as a collection
by its editors. This volume and its papers are published under
the Creative Commons License Attribution 4.0 International (CC
BY 4.0).

browsing query history and results. There has been
recent work on developing query specification tech-
niques involving just gestures and voice. Text based
interface techniques include keyword search and natu-
ral language search. Miscellaneous techniques include
spreadsheet based interfaces, query-by-example tech-
nique, techniques to handle the empty-result problem
with query relaxation or reformulation etc, personal-
ization and diversification techniques.

Data transformations Data transformations are of-
ten required to address the problem of heterogeneity
in various data sources by converting the data from
multiple sources into the same format. One common
approach to handle data transformation is to define a
transformation language and then generate rules based
on the language to perform data transformation on
a large set of data. However, this approach usually
requires expert users to write individual transforma-
tions for each data source manually. To alleviate this
problem, recently approaches have developed as in [2]
that take user examples as input and build data trans-
formation rules around it taking into consideration a
grammar.

Query Suggestions An approach to solve the ambi-
guity and inaccuracy in the information retrieval sys-
tem is query suggestion [4]. It is very common for a
user to reformulate their query when they didnt receive
ideal result from their original query. The system can
improve the users searching effort by providing sug-
gestions by guessing the user intention, according to
either users past behaviour or data-driven techniques.

Why-not There have been many techniques pro-
posed in literature that can explain where a piece of
data comes from, this can explain surprises in a result
set. The idea of whynot [5], on the other hand, seeks
to explain why a certain item is missing from the result
set. In the setting of traditional relational databases
where the idea of why-not originated, the user provides
the SQL query and a missing result item, the system
then pinpoints where the item was not included in the
resultset.



2 System design

The overall system prototype design involves two new
components - a) a module to generate rule suggestions
from the graph structure constructed to manage rule
sequences ¢) a module to answer user why-not ques-
tions on data transformations and providing explana-
tion in the form of modified graph structure. They key
modules are described in more detail below.

2.1 Generate rule suggestions

In the first part of system, the paper proposes a graph
structure to store PBE data transformation rules. The
rules we consider have been developed as part of foofah
system [6], where the focus has been on improving its
usability. By having a graph structure we are storing
relationships between common components in rule se-
quences and if the new rule structure is similar to var-
ious combination of rules in the graph, it can retrieve
relevant common rules more efficiently from graph in-
stead of the inefficient repeated sequential searches.
The rule sequences are organized in a graph structure
described as follows. That is the rule sequence at the
top of graph is represented as root and can be thought
of as a union of all the rules. The rule sequence in
the next level are the identifiers for individual rule se-
quences, which means if we have to build such a struc-
ture for 10 rules there will be 10 nodes with identifiers
rulel, rule2; rule3 etc for each of the rules in level
of the graph structure. The next level of the struc-
ture contain the individual rule components as part of
a directed subgraph, which means for instance if the
PBE data transformation program contains subrule se-
quences of the form split(t,1) and replace(t,2) then the
level 3 of the structure will contain nodes denoted by
these subrules in the form of directed subgraph with
edges between them denoting the sequence of their ex-
ecution. The next level contain nodes identifying the
individual variables that would eventually point to say
column names in a database or constant values or lit-
erals. The bottom level of the structure contain nodes
for the various literal or numeric constant values. So,
overall we end up with a structure consisting of 5 lev-
els which can be used to manage the rule sequences,
at the first level we have a root node, at the second
level we have identifiers for individual rule sequences,
at the third level we have nodes for subsequences in
rule sequences with directions between them denoted
their flow of execution, at the fourth level we have vari-
able names and fifth level we have literal or numeric
constant values.

In order to alleviate some of burden of writing all
the rules for the user, this section proposes a way to
generate rule suggestions using the graph structure de-
signed above. This is an entirely data-driven approach

that just makes use of rules written till now and does
not require any additional data sources and only uti-
lizes the graph structure developed earlier. The basic
intuition behind the proposed approach is that when-
ever the user starts with a partial rule, it searches for
the occurrences of the partial rules in the rules graph.
Performing such a such on the rules graph is done by
string similarity matching utilizing various measures
in literature such as jaro-winkler, sorenson-dice etc.
The suggestions are ranked according to the popularity
score, which represents the frequency of the elements
of new partial rule found in the earlier rules graph.
Of course, utilizing more sophisticated string similar-
ity heuristics is important and impact on the quality
of suggestions generated and studying them is part of
future work.

2.2 Answering why-not questions

In the second part of the paper, it proposes applying
why-not questions in PBE data transformation. Fre-
quently situations arise where the user is interested in
knowing why a particular item is missing from the re-
sultset. This concept has been developed extensively
in relational query systems and of late in graph match-
ing and clustering. This paper is the applies con-
cept of why-not in this context of graph-based struc-
ture PBE data transfomation which is used to gener-
ate suggestions. The user specifies a data item that
should have appeared in the transformed dataset but
instead is missing from the transformed dataset. To
know why the required dataset is missing, it first iden-
tifies the rule which generated either the data item
itself exactly or the rule sequence that could have pro-
duced a larger transformation of in which the data
item in question is part. Infact, there can be more
than one rule that produced the data item in question.
All the rule sequences which produced the data item
in question exactly and those that produced larger
transformed dataset of which it is part of are identi-
fied and which are then modified(through either insert,
delete or move) to reflect the changes required by the
user. Identifying such rules and modifications are done
through string similarity algorithms and simulated an-
nealing techniques. Designing better heuristics is part
of future work. On the other hand, replacing the data
item in question can affect other rules which have the
data item relevant rule in question either exactly or as
part of larger ruleset. Therefore, another round of rule
identification is required to find rule sequences which
have the rules with the data item in question. This
again requires string similarity algorithms, of course
studying better heuristics is again part of future work.



9500
9000
8500 8171
3000
g 7500 /
g 7000 /
g 6500 /
E 6000 V4
8 5500 /
E 5000 /
£ 4500 /
£ 4000
g 3500
g 3000
5 3500
8 2000
1500 j’
1000 g
500{] N i
g R 5 0 - o0 « o0 o
wnber of user ezampls
1000
950
900 Il
850 V4
800 y
750
g 700 II
i e /
600 y A
2 550 y A
¥ s00 /
F 450
£ 400
g 350
2 300
B s
200
150
100
* & QX
e e

W0 0 Iy o 0 A0 100 oo

3 Experiments

The experiments were conducted on a 64-bit com-
puter running windows 7 in Java. The real-
world data used in experiments are obtained from
the University of Florida Sparse Matrix Collection
(cise.ufl.edu/research) and the Parasol project and
KONECT (http://konect.uni-koblenz.de/networks).

The graph shown below in the figure 1 show the
execution times in seconds to construct graph in PBE
data transformation for various parameter configura-
tions for sizes of rule 3 to 1000.

The graph shown below in the figure 2 show the
execution times in seconds for the rule suggestion al-
gorithm in PBE data transformation for various pa-
rameter configurations for sizes of graph that is the
number of rules varying from 3 to 1000.

The graph shown below in the figure 3 show the ex-
ecution times in seconds for the why-not algorithm in
PBE data transformation for various parameter con-
figurations for sizes of data item in question varying
between 3 to 1000.

110
105
100

\\

85 7
8 0
g8 s
g 70
% 65 634
< 60
ERES
g 50
g By,
§ 40 A
£ 35 )
5 ox -
3 el
20 ~
15 —l
10 =
s .
3 © By iy o 0 A0 100 Iy
ize of subgraph in questi

4 Future work

The purpose of the paper is to introduces a new ap-
proach to generate PBE data transformation rule sug-
gestions and debug it. Designing more comprehensive
complex solutions to the aforementioned problems is
part of future work.

References

[1] Halevy, Alon Y. Data Integration: A Status
Report. , University of Washington , Seattle,
Washington, USA (2003)

[2] Wu, Bo, Szekely, Pedro A. and Knoblock,
Craig A. ”Learning Transformation Rules by
Examples.” Paper presented at the meeting
of the AAAT, 2012

[3] Jagadish, H. V., Chapman, Adriane, Elkiss,
Aaron, Jayapandian, Magesh, Li, Yunyao,
Nandi, Arnab and Yu, Cong. ”Making
database systems usable..” Paper presented
at the meeting of the SIGMOD Conference,
2007.

[4] Niu, Xi and Kelly, Diane. " The use of query
suggestions during information search..” Inf.
Process. Manage. 50 , no. 1 (2014): 218-234.

[5] Islam, Md. Saiful, Liu, Chengfei and Li,
Jianxin. ”Efficient answering of why-not
questions in similar graph matching.” Paper
presented at the meeting of the ICDE, 2016.

[6] Zhongjun Jin, Michael R. Anderson, Michael
J. Cafarella, H. V. Jagadish: Foofah: A
Programming-By-Example System for Syn-
thesizing Data Transformation Programs.
SIGMOD Conference 2017: 1607-1610



