CEUR-WS.org/Vol-2482/paper30.pdf

Deep Ensemble Learning for Legal Query Understanding

Arunprasath Shankar
LexisNexis
Raleigh, USA

arunprasath.shankar@lexisnexis.com

Abstract

Legal query understanding is a complex prob-
lem that involves two natural language pro-
cessing (NLP) tasks that needs to be solved
together: (i) identifying intent of the user
and (ii) recognizing entities within the queries.
The problem equates to decomposing a legal
query into its individual components and de-
ciphering the underlying differences that can
occur due to pragmatics. Identifying the de-
sired intent and recognizing correct entities
helps us return back relevant results to the
user. Deep Neural Networks (DNNs) have re-
cently achieved great success surpassing tradi-
tional statistical approaches. In this work, we
experiment with several DNN architectures
towards legal query intent classification and
entity recognition. Deep Neural architectures
like Recurrent Neural Networks (RNNs), Long
Short Term Memory (LSTM), Convolutional
Neural Networks (CNNs) and Gated Recur-
rent Units (GRU) were applied and com-
pared against one another both individually
and as combinations. The models were also
compared against machine learning (ML) and
rule-based approaches. In this paper, we de-
scribe a methodology that integrates posterior
probabilities produced by the best DNN mod-
els and create a stacked framework for com-
bining the different predictors to improve pre-
diction accuracy and F-measure for legal in-
tent classification and entity recognition.

Copyright © CIKM 2018 for the individual papers by the papers'
authors. Copyright © CIKM 2018 for the volume as a collection
by its editors. This volume and its papers are published under
the Creative Commons License Attribution 4.0 International (CC
BY 4.0).

Venkata Nagaraju Buddarapu
LexisNexis
Raleigh, USA

venkatanagaraju.buddarapu@lexisnexis.com

1. Introduction

With US legal services market approaching $500 bn
in 2018 that is ~2% of US GDP [1] and substantial
incentives to increase market share, maximizing user
satisfaction with search results continues to be the pri-
mary focus for legal search industry. Recently, there is
an upward trend of embracing vertical search engines
by legal companies since they provide a specialized
type of information service to satisfy a user’s intent.
Using a specialized user interface, a vertical search en-
gine can return more relevant results than a general
search engine for in-domain legal queries.

In practice, a user has to decide his choice of ver-
tical search engine beforehand to satisfy his query in-
tent. It would be convenient if a query intent identifier
could be provided in a general search engine that could
precisely predict whether a query should trigger a ver-
tical search in a certain domain. Moreover, since a
user’s query may implicitly express more than one in-
tent, it would be very helpful if a general search engine
could detect all query intents, distribute it to appro-
priate vertical search engines and effectively organize
the results from the different vertical search engines to
satisfy a user’s need. Consequently, understanding a
query intent is crucial for providing better search re-
sults and thus improving the overall satisfaction of the
user.

Understanding intent and identifying legal entities
from a user’s query can help legal search automati-
cally route the query to corresponding vertical search
engines and obtain relevant contents, thus, greatly im-
proving user satisfaction meaning better assistance to
law researches to support legal arguments and deci-
sions. Law researchers have to cope with a tremendous
load of legal content since sources of law can originate
from diversified sources like judicial branch, legisla-
tive branch (statutes), legal reference books, journals,
news etc. This makes legal search and understanding
queries in legal search such an important aspect to re-
trieve relevant support documents for supporting one’s

argument.

Legal search is hard as it demands writing complex
queries to retrieve desired content from information
retrieval (IR) systems. Classifying legal queries and
identifying domain specific legal entities from queries
is even harder. For e.g., in the query: “who is supreme
court magistrate John Roberts and abortion law?”, the
word “magistrate” can be resolved to a <judge title>
when observed along with the context phrase “supreme
court”. Similarly, the phrase “abortion law” can be
identified as a <practice area> when seen alongside
a supporting context. However, since we also observe
the interrogative phrase “who is”, we can safely assume
that the intent of this query is <judge> or <person>
search.

Similar to google queries, legal queries can be clas-
sified into one of three categories. (i) Do: The users
wants to do something, like buy a product or ser-
vice. E.g., Buy Law Books, Research Guides, Po-
lice/Personal Reports, Real Estate Property Records
ete. (i) Know: An informational query, where the
user wants to learn about a subject. E.g., law, statute,
doctrine etc. Very often single word queries are clas-
sified at least partially as “Know” queries. (iii) Go:
Also known as a navigational query, the user wants to
go to a specific site scoped to a particular legal entity.
E.g., a query where a user wants to know analytics of
a specific legal entity like a judge or an expert wit-
ness. Our research in this work focuses only on “Go”
type of queries, e.g., an user wanting to understand a
particular judge profile with the query “judge John D.
Roberts”.

The process of finding named entities in a text and
classifying them to a semantic type is called named
entity recognition (NER). Legal NER is nearly always
used in conjunction with intent classification systems.
Given a query, the goal of NER system described in
this paper is two-fold: (i) segment the input into se-
mantic chunks, and (ii) classify each chunk into a
predefined set of semantic classes. For e.g., given a
query “judge john d roberts”, the desired output would
be: “judge” = <OTHER> and “john d roberts” =
<JUDGE>. Here the class <JUDGE> represents a
person or a judge entity and the class <OTHER> rep-
resents any non judge specific term.

The aim of this research is to improve the under-
standing of queries involved in legal research. In this
paper, we explore three different approaches: (a) ma-
chine learning (ML) with feature engineering, (b) deep
learning (DL) without any feature engineering and (c)
ensemble of deep neural networks. We then perform
quantitative evaluations in comparison to an already
existing baseline model which is a rule-based classifi-
cation system in production. Finally, we show from
our experimental results that a deep ensemble model

significantly outperforms other approaches for both in-
tent classification and legal NER.

2. Background and Related Work

DL systems have dramatically improved the state of
several domains like NLP, computer vision, image pro-
cessing etc. Various deep architectures and learning
methods have been developed with distinct strengths
and weaknesses in recent years. Deep ensemble learn-
ing is a learning paradigm where ensembles of several
neural networks show improved generalization capa-
bilities that outperform those of single networks. For
deep learning of multi-layer neural networks, ensem-
ble learning is still applicable [2, 3]. However, there is
not much work done towards legal domain involving
neither deep learning nor ensemble learning. How can
ensemble learning be applied to various DNN archi-
tectures to achieve better results for legal tasks is the
primary focus of this paper.

Most ML approaches to text understanding consists
of tokenizing a string of characters into structures such
as words, phrases, sentences or paragraphs, and then
apply some statistical classification algorithm onto the
statistics of such structures [4]. These techniques work
well when applied to a narrowly defined domain.

Typical queries submitted to legal search engines
contain very short keyword phrases, which are gener-
ally insufficient to fully describe a user’s information
need. Thus, it is a challenging problem to classify
millions of queries into some predefined categories. A
variety of related topical query classification problems
have been investigated in the past [5] [6]. Most of
them seek to use statistical machine learning methods
to train a classifier to predict the category of an input
query. From the statistical learning perspective, in or-
der to obtain a classifier that has good generalization
ability in predicting future unseen data, two condi-
tions should be satisfied: discriminative feature repre-
sentation and sufficient training samples. However, for
the problem of query intent classification, even though
there are huge volumes of legal queries, both condi-
tions are hardly to met due to the sparseness of query
features coupled with the sparseness of labeled train-
ing data. In [5], Beitzel et al. attempted to solve this
problem through augmenting the query with more fea-
tures using external knowledge, such as search engine
results and achieved fair results.

DNNs have revolutionized the field of NLP. RNNs
and CNNs, the two main types of DNN architectures
are widely explored to handle various NLP tasks. CNN
is supposed to be good at extracting positional invari-
ant features and RNN at modeling units in sequence.
The state-of-the-art on many NLP tasks often switches
due to the battle of CNNs and RNNs. While CNNs

take advantage of local coherence in the input to cut
down on the number of weights, RNNs are used to pro-
cess sequential data (often with LSTM cells). RNNs
are also good at representing very large implicit inter-
nal structures that are difficult even to think about.

In summary, the conventional wisdom is that RNNs
should be used when the context is richer and there
is more state information that needs to be captured.
This proposition has been challenged by CNNs re-
cently with the claim that finite state information of
limited scope can be more efficiently handled by mul-
tiple convolution layers. We think both are true, and
one should not go for RNNs just for the sake of it,
instead more efficient deep CNNs should be tried in
limited context situations. But for more complex im-
plicit mappings where context and state information
spans are much bigger, RNNs are the best and at this
point almost the only tool.

There is not a lot of previous research work involv-
ing DL and legal domain for the problems of intent
classification and NER. However, there are a handful
of papers that talk about DNN approaches for non-
legal intent classification and general NER. Also re-
cently, RNNs and CNNs have been applied on a variety
of NLP tasks with various degree of success. Below,
we talk about the evolution of various DNNs and their
applications towards NLP tasks.

In [7], Zhai et al. adopted RNNs as building blocks
to learn desired representations from massive user click
logs. The authors proposed a novel attention network
that learns to assign attention scores to words within a
sequence (query or ad). In [8], Hochreiter and Schmid-
huber introduced LSTM which solved the most com-
plex, artificial long-time-lag tasks that have never been
solved by previous recurrent network algorithms. In
[9], Chung et al. compared different types of recur-
rent units in RNNs especially focusing on units that
implement a gating mechanism, such as LSTM and
GRU units. They evaluated these units on the tasks
of polyphonic music modeling and speech signal mod-
eling and proved LSTMs and GRUs work better than
traditional recurrent units.

In [10], Hinton et al. introduced CNN and used
it to for image classification on the ImageNet dataset
and established new state-of-the-art results. In [11],
LeCun et al. demonstrated that we can apply DL
to text understanding from character-level inputs all
the way up to abstract text concepts, using tempo-
ral CNNs. They applied CNNs to various large-scale
datasets, including ontology classification, sentiment
analysis, text categorization etc. and showed that tem-
poral CNNs can achieve astonishing performance with-
out any prior knowledge of syntactic or semantic struc-
tures with regards to a human language. With respect
to intent classification, Hu et al. devised a methodol-

ogy to identify query intent by mapping the query to
a representation space backed by Wikipedia [12]. In
[13], the authors applied CNNs for intent classification
and achieved results in par with state-of-the-results.

There are also many recent works that combine
RNNs with CNNs for different NLP tasks. For ex-
ample, in [14], Chiu et al. presented a novel neural
network architecture that automatically detects word
and character-level features using a hybrid bidirec-
tional LSTM and CNN architecture, eliminating the
need for most of feature engineering and established
a new state-of-the-art performance with an F1 score
of 91.62% on CoNLL-2003 data set. In [15], Lim-
sopatham et al. proposed a bidirectional LSTM (Bi-
LSTM) to automatically learn orthographic features
from tweets.

There is a handful of papers that delve into legal
applications using DNNs. In [16], Sugathadasa et al.
proposed a system that includes a page ranking graph
network with TF-IDF to build document embeddings
by creating a vector space for the legal domain, which
can be trained using a doc2vec neural network model
supporting incremental and extensive training for scal-
ability of the system. In [17], Nanda et al. proposed
a hybrid model using LSTM and CNN which utilizes
word embeddings trained on the Google News vectors
and evaluated the results on COLIEE 2017 dataset.
They demonstrated that the performance of LSTM +
CNN model was competitive with other textual entail-
ment systems. Similarly, in [18], the authors proposed
a methodology to employ DNNs and word2vec for re-
trieval of civil articles.

For NER, Huang et al. proposed a variety of LSTM
and LSTM variants like LSTM 4+ CRF for NER and
achieved state-of-the-art results [19]. Recently this
year, in [20], Peters et al. introduced a new type of
deep contextualized word representation that models
both semantics and polysemy and improved the state
of the art across six challenging NLP problems, includ-
ing question answering, textual entailment, sentiment
analysis and NER.

In this paper, we scope our research limited to judge
queries meaning queries that are meant to be a search
for judge profile. Being this the scope of the problem,
the intent classification task needs to classify a given
query as a judge query or not. Once the query is iden-
tified as a judge query, the NER system that follows,
recognizes if the query contains any person entities.
The entities are then routed to vertical searches that
follow. The structure of the paper is as follows. Sec-
tion 3. discusses the various experiments that was car-
ried out to solve legal query understanding. That is
followed by Section 4. that presents and analyses over-
all results. The paper ends with Section 5. which gives
the conclusion and discussion on future work.

3. MODELS AND EXPERIMENTS

The adoption of artificial Intelligence (AI) technology
is undoubtedly transforming the practice of law. Many
in the legal profession are aware that using Al can
greatly reduce time and costs while increasing predic-
tion measures. In the following subsections, we talk
about data collection, augmentation and training of
the different DNN models for legal tasks we experi-
mented for: (i) intent classification and (ii) legal entity
recognition.

3.1 Data Collection

For the purpose of our experiments, we created data
sets comprising of different types of legal queries such
as judge search, case law search, statutes/elements
search, etc. For intent classification, since the clas-
sification task is binary, we labeled all judge queries
to be positive and the rest as negative. For NER, we
used three labels: (i) <OTHER> used to tag any to-
kens that are not part of a judge name (ii) <B-PER>
denotes the beginning of a person (judge) name and
(iii) <I-PER> denotes the inside of a name. Table 1
portrays the different query types by volume we used
for our experiments. All of the collected data labeled
by our subject matter experts (SMEs). All of the data
discussed here are proprietary to LexisNexis.

3.2 Data Augmentation and Balancing

The labeled data was good enough to get started but
was highly imbalanced with respect to NER labels. In
order to balance out the data set, we augmented the
data by (i) expanding queries by pattern using judge
names from our proprietary judge master database, (ii)
oversampling the under represented patterns and (iii)
under sampled the over exemplified patterns. The top
10 patterns by frequency are shown in table 3. These
10 patterns alone contributed to ~78% of the labeled
data. The balancing act was carried out by following
two strategies: For oversampling, we pick a pattern
and create synthetic data points (queries) by randomly
substituting judge names/titles around the patterns to
be fitted. For the process of under sampling, random
data points are selected from buckets of pattern and
removed. The sampling process is stopped when there
are equal number of queries in all the buckets of pat-
terns. Once the data is augmented and balanced, we
split the data into train, dev and test sets. Table 2
shows the ratio of data split for both intent classifica-
tion and NER.

3.3 Word Embedding

Learning a high-dimensional dense representation for
vocabulary terms, also known as a word embedding,

Type Example Volume %

Judge judge John D. Roberts 34

Word Wheel | Ohio Municipal = Court, 6
Bellefontaine

Query Log sexual harassment 5

Statute statute /s limitations /s ac- 31
tual /s fraud

Elements Law contract defense uncon- 20
scionability elements

Case Search | Powers v. USAA 4

Table 1: Data Types by Volume

Intent NER

Train 505,760 1,052,000
Dev 20,000 20,000
Test 20,000 20,000

Table 2: Data Sets

has recently attracted much attention in NLP and IR
tasks. The embedding vectors are typically learned
based on term proximity in a large corpus and is used
to accurately predict adjacent word(s) for a given word
or context [21]. For the purpose of training our NER
DNN models, we created word vectors of size 580,614
to be used as word embeddings to the embedding layer
of our DNN models. The word vectors were created by
training a word2vec continous bag of words (CBOW)
model on AWS ml.p3.2xlarge instance with a single
NVIDIA Tesla V100 GPU. As an input to the model,
10 Million queries were obtained from user session logs
were used. These queries were ordered by frequency.
The word2vec model was trained in 112.2 minutes for
100 epochs.

Pattern Count
B-PER I-PER I-PER 217,374
B-PER I-PER 109,500

O B-PER I-PER I-PER 92,436
B-PER I-PER I-PER I-PER 73,668

O B-PER I-PER 53,896

O B-PER I-PER I-PER I-PER I-PER | 48,157
B-PER I-PER I-PER I-PER 39,970
B-PER I-PER I-PER I-PER I-PER 33,474
O B-PER 22,986

O O O B-PER I-PER I-PER I-PER O 9,968

Table 3: Top 10 Patterns

Dev Test
Model F FP FN F FP FN
Rule Engine (Baseline) 98.66 57 209 98.69 52 208
Logistic Regression 98.31 137 141 98.48 132 120
Gaussian NB 89.79 1789 20 90.08 1749 20
AdaBoost 97.58 137 256 97.54 165 241
Decision Tree 95.75 25 647 95.96 25 623
Linear SVM 98.28 139 142 98.54 124 117
Multi-layer Perceptron 98.36 107 160 98.57 119 117

Table 4: Intent Classification - Baseline vs ML

3.4 Intent Classification
3.4.1 Baseline vs ML Approaches:

For intent classification, we tried a few different ML
classifiers firsthand before delving into the deep learn-
ing arena. The ML models were compared against
a rule-based query recognition system highlighted
that was already established as our baseline system
to improve. Classifiers were selected from both the
linear and non-linear category. The list of classifiers
tried and their corresponding results (F1 score) against
baseline are shown in table 4 above. Our main require-
ment while picking and implementing the classifiers
was to minimize the overall number of false positives.
This is because false positives with respect to intent
classification can intercept queries that are meant to
be routed to a different vertical search engine affect-
ing the overall customer satisfaction towards the prod-
uct. Amongst the linear classifiers, linear SVM seemed
to perform slightly better than the logistic regression
classifier. Amongst the non-linear category, the multi-
layer perceptron highlighted « seemed to perform the
best beating decision trees, adaboost and naive bayes
approaches.

3.4.2 Feature Engineering for ML Classifiers:

There are different ways one can address a judge in
legal taxonomy such as “chief justice”, “associate jus-
tice”, “magistrate” etc. All of the different phrases
used for addressing a judge are compiled into a bag
of words representation. In addition to bag of words,
all the ML classifiers use POS, gazetteer, word shape
and orthographic features to represent semantic and

linguistic meaning of a query.

3.4.3 LSTM based Intent Classifier:

The LSTM, first described in [8], attempts to circum-
vent the vanishing gradient problem by separating the
memory and output representation, and having each
dimension of the current memory unit depending lin-
early on the memory unit of the previous time step.
The DNN architecture we tried using LSTM is shown

| Embedding [49701 x 200] |

l

| LSTM [100, tanh] |
|
2

’ Flatten [200, tanh] ‘

’TimeDistributed [1, sigmoid] ‘

Figure 1: LSTM for Intent Classification

in figure 1. The embedding layer that feeds the LSTM
layer is composed of a vocabulary of 49,701 words with
an output dimension of 200. 100 hidden units are used
for the LSTM layer. The flatten layer uses 200 hidden
units. The flatten layer takes a tensor of any shape and
transform it into a one dimensional tensor. Both uni
and bi-directional LSTMs were trained for the task.

3.4.4 CNN based Intent Classifier:

CNNs are built out of many layers of pattern recog-
nizers stacked on top of each other. Convolutional is
a way of saying that the machine looks at small parts
of a query first rather than trying to account for the
whole thing. Each successive layer combines informa-
tion from these small parts to fill in the bigger picture
and assemble complex patterns of meaning. After try-
ing few variants of LSTM architectures, we started ex-
perimenting with CNNs for intent classification. The
general neural architecture we used for CNN is show
in figure 2. The major difference here compared to the
LSTM models are: CNNs use two dense layers after
the flatten layer whereas LSTMs use only one layer.
The 1D convolutional layer uses 32 filters with a ker-
nel size = 8 and the max pooling layer uses 2 strides
with a pool size = 2.

3.4.5 Hybrid Models:

As a next step, the best performing models from both
the LSTM and CNN pools were picked and combined
into a hybrid model for classification. We built two

| Embedding [49701 x 200] |

’ ConvlD [32, 8, relu] ‘

|

’MaXPoolinng [2, 2, valid] ‘

|

’ Flatten [200, tanh] ‘

|

’ TimeDistributed [10, relu] ‘

’ TimeDistributed [1, sigmoid] ‘

Figure 2: CNN for Intent Classification

| Embedding [49701 x 200] |

| ConviD [32, 8, relu] |

|

’MaXPoolinng [2, 2, valid] ‘

’Bidirectional LSTM [100, tanh] ‘

|

’ Flatten [200, tanh] ‘

|

’ TimeDistributed [10, relu] ‘

’ TimeDistributed [1, sigmoid] ‘

Figure 3: Bi-LSTM + CNN for Intent Classification

models for this experiment, LSTM + CNN and Bi-
LSTM + CNN. The architectural diagram for Bi-
LSTM + CNN model is shown in figure 3.

3.4.6 Deep Ensemble for Intent Classification:

Ensemble learning is a ML paradigm where multiple
learners are trained to solve the same problem. In con-
trast to ordinary ML approaches which try to learn one
hypothesis from training data, ensemble methods try
to construct a set of hypotheses and combine them to
use. For intent classification, we use stacking which
applies several models to original data. In stacking
we don’t have just an empirical formula for our weight
function, rather use a logistic regression model to esti-
mate the input together with outputs of every model
to estimate the weights or, in other words, to deter-
mine what models perform well and what badly given
these input data.

To simplify the stacking procedure for ensemble

Avg Time Epochs Batch Size
LSTM 75.54 50 1000
Bi-LSTM 93.72 30 1000
CNN 37.22 100 500
LSTM + CNN 84.21 50 1000
Bi-LSTM + CNN 101.45 50 1000

Table 5: Train Statistics - Intent Classification

CNN Ensemble Classifier

/ H1(x)
LSTM

H2(x

/V \ S0i.Hi(x)
H3(x)
Input | Bi-LSTM | E bl | Output
yr
\‘ H5(x
LSTM +
\CNN
Bi-LSTM +
CNN

Figure 4: Ensemble Classifier for Intent Classification

learning, we perform a linear combination of the orig-
inal class posterior probabilities produced by the best
DNN models at the word level (see table 8). A set of
parameters in the form of full matrices are associated
with the linear combination, which are learned using
the training data consisting of the word-level poste-
rior probabilities of the different models and its cor-
responding word-level target values (0 or 1). Figure 4
depicts the model architecture of the ensemble classi-
fier for the task of intent classification.

3.4.7 Training:

Table 5 below shows the overall training statistics
for the different DNN models deployed for intent
classification. ~The models were trained on AWS
ml.p3.8xlarge instance with 4 NVIDIA Tesla V100
GPUs. Average time shown below is measured in min-
utes.

3.5 Named Entity Recognition
3.5.1 Baseline:

Baseline model for NER is shown in table 12 . The
baseline model (highlighted in ») was previously estab-
lished and it is the same rule-based system that was
set as baseline for intent classification. The row high-
lighted in =~ shows metrics from a conditional random

Architecture Dev Test
Dropout Hidden Units Embedding F-score FP FN F-score FP FN
LSTM I False 50 200 99.74 25 27 99.72 14 42
LSTM II False 50 100 99.64 52 20 99.74 26 27
LSTM III False 50 200 99.77 23 24 99.79 17 25
LSTM IV True 50 200 99.66 54 15 99.78 24 21
Bi-LSTM I False 100 200 99.83 19 20 99.84 11 22
Bi-LSTM II True 100 200 99.72 38 18 99.76 26 23
Table 6: Intent Classification - LSTM
Architecture Dev Test
Filters Kernel Padding F-score FP FN F-score FP FN
CNN I 32 16 same 99.83 21 13 99.83 15 18
CNN II 32 8 same 99.84 19 13 99.83 14 18
CNN III 64 8 same 99.82 24 11 99.84 13 18
CNN IV 64 16 same 99.78 28 15 99.89 15 15
CNN V 64 4 same 99.81 31 9 99.83 20 14
Table 7: Intent Classification - CNN
Dev Test
Model F-score FP FN F FP FN
LSTM III 99.77 23 24 99.79 17 25
Bi-LSTM 1 99.81 19 20 99.84 11 22
CNN II 99.84 19 13 99.83 14 18
LSTM III + CNN II 99.81 26 14 99.90 10 11
Bi-LSTM I + CNN II 99.88 14 11 99.86 7 22
Ensemble (Top 5) 99.91 9 9 9991 4 15
Table 8: Intent Classification - Winners & Ensemble
Architecture Dev Test
Filters Kernel Padding Precision Recall F-score Precision Recall F-score
CNN I 128 5 same 99.2707 99.2654 99.2665 99.0583 99.0511 99.0526
CNN II 128 5 same 98.6557 98.6435 98.6468 98.9799 98.9654 98.9681
CNN III 64 5 same 99.2632 99.2549 99.2564 99.0729 99.0605 99.0627
CNN IV 128 10 same 99.3972 99.3967 99.3969 99.2193 99.2177 99.2181
Table 9: Named Entity Recognition - CNN
Architecture Dev Test
Dropout Hidden Units Precision Recall F-score Precision Recall F-score
RNN I 0.4 100 99.1119 99.1022 99.1042 98.8990 98.8876 98.8900
RNN II 0.4 100 99.1171 99.1063 99.1084 98.9171 98.9039 98.9065
RNN III 0.2 100 99.1750 99.1665 99.1682 98.9818 98.9711 98.9733
LSTM 0.4 100 99.1727 99.1624 99.1643 98.9894 98.9764 98.9788
Bi-LSTM 0.4 100 99.5344 99.5331 99.5334 99.3422 99.3397 99.3403
GRU 0.4 100 99.1256 99.1227 99.1235 98.8564 98.8523 98.8534
Bi-GRU 0.4 100 99.4734 99.4733 99.4734 99.2931 99.2929 99.293

Table 10: Named Entity Recognition - Recurrent Neural Networks

Dev Test
Model Precision Recall F-score Precision Recall F-score
RNN III + CNN IV 99.3812 99.3794 99.3798 99.2027 99.1998 99.2635
LSTM + CNN IV 99.4036 99.3995 99.4002 99.269 99.2624 99.2635
Bi-LSTM + CNN IV 99.5286 99.5262 99.5267 99.4043 99.4007 99.4013
GRU + CNN IV 99.4365 99.4323 99.4330 99.2528 99.2466 99.2477
Bi-GRU + CNN IV 99.532 99.5294 99.5299 99.3829 99.3786 99.3793

Table 11: Named Entity Recognition - Hybrid Models

Dev Test
Model Precision Recall F-score Precision Recall F-score
Rule Engine (Baseline) 93.2794 92,9001 92.7009 94.0157 93.7872 93.6778
CRF 92.1442 89.3441 91.3463 91.3421 90.0323 90.6341
CNN IV 99.3972 99.3967 99.3969 99.2193 99.2177 99.2181
LSTM + CNN IV 99.4036 99.3995 99.4002 99.2692 99.2624 99.2635
Bi-LSTM 99.5344 99.5331 99.5334 99.3422 99.3397 99.3403
Bi-LSTM + CNN IV 99.5286 99.5262 99.5267 99.4043 99.4007 99.4013
Bi-GRU + CNN IV 99.5323 99.5294 99.5299 99.3829 99.3786 99.3793
Ensemble (Top 5) 99.5596 99.5577 99.5581 99.4193 99.4159 99.4165

Table 12: Named Entity Recognition - Winners & Ensemble

| Embedding [577149 x 200] |

|

’ Dropout [0.2] ‘

|

| RNN[200, tanh] |

’ TimeDistributed [3, softmax] ‘

Figure 5: RNN for NER

field (CRF) probabilistic model that was previously
implemented. This model was eventually discarded
since it was outperformed by most of DNN models.

3.5.2 RNN based Named Entity Recognition:

For NER, we started with RNNs. The neural ar-
chitecture for RNN is shown in figure 5 above. For
the embedding layer, we used pre-trained word2vec
embeddings of dimensions (577,149 x 200). For the
RNN layer, 200 hidden units were used. The time dis-
tributed output layer has 3 units and uses a softmax
function since we have 3 classes in total (<OTHER>,
<B-PER> & <I-PER>. A dropout value of 0.2 was
also used for the configuration.

3.5.3 LSTM based Named Entity Recognition:

LSTMs in general circumvent the vanishing gradient
problem faced by RNNs. For NER, we used both uni
and bi-directional LSTMs. The architecture is similar
to shown in figure 5 except the RNN layer is replaced

by a LSTM layer.

3.5.4 CNN based Named Entity Recognition:

For NER, we also experimented with CNN. The neu-
ral architecture for CNN is shown in figure 6. The
ConvlD layer consists of 128 filters with kernel size
set to 5. In contrary to the CNN used for intent clas-
sification, this architecture does not use a max pooling
layer.

3.5.5 GRU based Named Entity Recognition:

More recently, gated recurrent units have been pro-
posed [9] as a simplification of the LSTM, while keep-
ing the ability to retain information over long se-
quences. Unlike LSTM, GRU uses only two gates,
memory units do not exist, and the linear interpolation
occurs in the hidden state. As part of our experiment,
we replaced the RNN layer in the architecture shown
in figure 5 with a GRU layer.

3.5.6 Hybrid Models:

For NER, we combined the above discussed models.
Some of the hybrid models we built are RNN + CNN,
LSTM + CNN and GRU + CNN (both uni and bi-
directional). Architecture of Bi-LSTM + CNN is
shown in figure 7.

Avg Time Epochs Batch Size

RNN 85.23 50 1000
] Embedding [577149 x 200] \ LSTM 104.38 50 1000
BLLSTM 123.84 50 1000
| GRU 942 50 1000
[ConviD [128, 5, relu] | Bi-GRU 104.27 50 1000
| CNN 72.02 100 500
’TimeDistributed 3, softmax] \ RNN + CNN 97.93 50 1000
LSTM + CNN 134.81 50 1000
BLLSTM + CNN 15443 50 1000
. GRU + CNN 115.24 50 1000

F 6: CNN for NER
teure or Bi-GRU 1 CNN 13264 50 1000

Table 13: Train Statistics - Named Entity Recognition

3.5.7 Deep Ensemble for Named Entity

’ Embedding [577149 x 200] ‘ Recognition:
l To create an ensemble for NER, the DNN models are
’ Conv1D [128, 5, relu] ‘ ranked by their F1 score. The top 5 best models are
l then picked and stacked into an ensemble. Ensemble
’ Dropout [0.2] ‘ of top 10 models was also experimented and discarded

since it underperformed compared to the ensemble of
top 5. Figure 8 shows the architecture of the chosen
ensemble model.

’Bidirectional LSTM [200, tanh] ‘

’TimeDistributed [3, softmax] ‘ 3.5.8 Training:

The training time for epochs are show in table 13.
A batch here corresponds to a chunk of user input
queries. The neural architectures were implemented
using tensorflow, keras and scikit-learn.

Figure 7: Bi-LSTM + CNN for NER

4. Results
4.1 Evaluation Metrics
CNN Ensemble Classifier We utilize standard measures to evaluate the perfor-
mance of our classifiers, i.e., precision, recall and F1-
/ H1() measure. Precision (P) is the proportion of actual pos-
BLLSTM itive class members returned by our method among
H2(x all predicted positive class members returned by our
7 \ Z0iHiC) method. Recall (R) is the proportion of predicted pos-
input p LM+ ”3"‘; k, - o owme itive members among all actual positive class members
i 200 b in the data. F1 is the harmonic average of precision
/‘ and recall which is defined as F1 = 2PR/(P+R).
\“ H5(x
Bi-LSTM +
CNN 4.2 Best Performers
Empirical results for intent classification are shown in
Bi-GRU + tables 6, 7 & 8. Results for NER are shown in tables
CNN 9, 10, 11 & 12. Based on evaluation metrics, we can
clearly see that the ensemble models outperform all

other DNN models in both tasks, intent classification
Figure 8: Ensemble Classifier for Named Entity as well as NER by a good margin. In case of intent
Recognition classification, the ensemble model (top 5) highlighted
o in table 8 has the lowest count of false positives and
false negatives on both the dev and test data sets. It

also has the highest F1 score value = 99.91% beating
the baseline rule-based system by a margin of ~1.5%.
In case of NER, the ensemble model (top 5) highlighted
o in table 12 outperforms all other DNN models and
beats the baseline model by a margin of ~6%.

5. Conclusion and Future Work

Our results show an ensemble model of stacking dif-
ferent DNNs of varying architectures outperforms in-
dividual performances of DNNs for the tasks of le-
gal intent classification and entity recognition. RNNs,
LSTMs, GRUs and even CNNs, all compress the nec-
essary information of a source query into a fixed-length
vector. This makes it difficult for the DNNs to cope
with long queries, especially those that are longer than
the queries in the training corpus. In future, we plan
to use attention within queries. Attention is the idea
of freeing a DNN architecture from the fixed-length
internal representation. The DNN models we trained
are at the word level, in future we plan to expand the
size of the training data and try DNN models at the
character level. Moreover, since the difference in per-
formance between the DNN models were rather small,
we plan to run tests of statistical significance and error
analysis to capture performance by patterns. Lastly,
we also plan to look into the impact on our models
with respect to data and covariance shifts.

6. Acknowledgements

This research was supported by LexisNexis, Raleigh
Technology Center, USA.

References

[1] “http://www.legalexecutiveinstitute.com.”

[2] L. Deng and J. C. Platt, “Ensemble deep learning for
speech recognition,” in INTERSPEECH 2014, 15th Annual
Conference of the International Speech Communication
Association, Singapore, September 14-18, 2014, pp. 1915—
1919, 2014.

[3] X. Zhou, L. Xie, P. Zhang, and Y. Zhang, “An Ensem-
ble of Deep Neural Networks for Object Tracking,” in
2014 IEFEE International Conference on Image Process-
ing (ICIP), pp. 843-847, Oct 2014.

. G. Soderland, “Building a Machine Learning based Text
4] S. G. Soderland, “Buildi Machine L ing based T«
Understanding System,” 05 2001.

[6] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis,
A. Chowdhury, and A. Kolcz, “Improving Automatic
Query Classification via Semi-supervised Learning,” in
Fifth IEEE International Conference on Data Mining
(ICDM’05), pp. 8 pp.—, Nov 2005.

6] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin,
and Q. Yang, “Q2c@Qust:Our Winning Solution to Query
Classification in KDDCUP 2005,” SIGKDD Ezxplorations,
vol. 7, pp. 100-110, 2005.

[7] S. Zhai, K. Chang, R. Zhang, and Z. M. Zhang, “Deepln-
tent: Learning Attentions for Online Advertising with Re-
current Neural Networks,” in Proceedings of the 22nd ACM

(8]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pp. 1295-1304, 2016.

S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Comput., vol. 9, pp. 1735-1780, Nov.
1997.

J. Chung, C. Giilgehre, K. Cho, and Y. Bengio, “Empir-
ical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling,” CoRR, vol. abs/1412.3555, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
Classification with Deep Convolutional Neural Networks,”
in Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., pp. 1106-1114,
2012.

X. Zhang and Y. LeCun, “Text Understanding from
Scratch,” CoRR, vol. abs/1502.01710, 2015.

J. Hu, G. Wang, F. H. Lochovsky, J. Sun, and Z. Chen,
“Understanding User’s Query Intent with Wikipedia,” in
Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009,
pp. 471-480, 2009.

H. B. Hashemi, A. Asiaee, and R. Kraft, “Query Intent De-
tection using Convolutional Neural Networks,” in WSDM
QRUMS Workshop, 2016.

J. P. C. Chiu and E. Nichols, “Named Entity Recognition
with Bidirectional LSTM-CNNs,” TACL, vol. 4, pp. 357—
370, 2016.

N. Limsopatham and N. Collier, “Bidirectional LSTM for
Named Entity Recognition in Twitter Messages,” in Pro-
ceedings of the 2nd Workshop on Noisy User-generated
Text, NUTQCOLING 2016, Osaka, Japan, December 11,
2016, pp. 145-152, 2016.

K. Sugathadasa, B. Ayesha, N. de Silva, A. S. Perera,
V. Jayawardana, D. Lakmal, and M. Perera, “Legal Doc-
ument Retrieval using Document Vector Embeddings and
Deep Learning.,” CoRR, vol. abs/1805.10685, 2018.

R. Nanda, K. J. Adebayo, L. D. Caro, G. Boella, and
L. Robaldo, “Legal Information Retrieval using Topic Clus-
tering and Neural Networks,” in COLIEFE 2017. 4th Com-
petition on Legal Information Eztraction and Entailment,
held in conjunction with the 16th International Conference
on Artificial Intelligence and Law (ICAIL 2017) in King’s
College London, UK., pp. 68-78, 2017.

A. H. N. Tran, “Applying Deep Neural Network to Re-
trieve Relevant Civil Law Articles,” in Proceedings of the
Student Research Workshop Associated with RANLP 2017,
(Varna), pp. 4648, INCOMA Ltd., September 2017.

Z. Huang, W. Xu, and K. Yu, “Bidirectional
LSTM-CRF Models for Sequence Tagging.,” CoRR,
vol. abs/1508.01991, 2015.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,

C. Clark, K. Lee, and L. Zettlemoyer, “Deep Contextual-
ized Word Representations.,” CoRR, vol. abs/1802.05365,
2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed Representations of Words and
Phrases and their Compositionality.,” in NIPS (C. J. C.
Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger,
eds.), pp. 3111-3119, 2013.

